Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Ismael Ramos-Pérez"'
Autor:
Ismael Ramos-Pérez, José Antonio Barbero-Aparicio, Antonio Canepa-Oneto, Álvar Arnaiz-González, Jesús Maudes-Raedo
Publikováno v:
Information, Vol 15, Iss 4, p 223 (2024)
The most common preprocessing techniques used to deal with datasets having high dimensionality and a low number of instances—or wide data—are feature reduction (FR), feature selection (FS), and resampling. This study explores the use of FR and re
Externí odkaz:
https://doaj.org/article/62abeb852d844c059817ca5685feb344
Autor:
María Consuelo Sáiz-Manzanares, Ismael Ramos Pérez, Adrián Arnaiz Rodríguez, Sandra Rodríguez Arribas, Leandro Almeida, Caroline Françoise Martin
Publikováno v:
Applied Sciences, Vol 11, Iss 13, p 6157 (2021)
In recent decades, the use of technological resources such as the eye tracking methodology is providing cognitive researchers with important tools to better understand the learning process. However, the interpretation of the metrics requires the use
Externí odkaz:
https://doaj.org/article/4313f0ff580745deb140f1906f56c723
Autor:
Ludmila I. Kuncheva, José Luis Garrido-Labrador, Ismael Ramos-Pérez, Samuel L. Hennessey, Juan J. Rodríguez
Publikováno v:
Ecological Informatics. 74:101994
In the face of the global concern about climate change and endangered ecosystems, monitoring individual animals is of paramount importance. Computer vision methods for animal recognition and re-identification from video or image collections are a mod
Publikováno v:
Repositorio Institucional de la Universidad de Burgos (RIUBU)
instname
instname
This paper studies the effects that combinations of balancing and feature selection techniques have on wide data (many more attributes than instances) when different classifiers are used. For this, an extensive study is done using 14 datasets, 3 bala
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5ee48c4b547a2904f70e23199e3e52f2
http://hdl.handle.net/10259/6192
http://hdl.handle.net/10259/6192
Publikováno v:
Computer Applications in Engineering Education. 26:2255-2265
Autor:
Caroline Françoise Martin, María Consuelo Sáiz-Manzanares, Adrián Arnaiz Rodríguez, Sandra Rodríguez Arribas, Ismael Ramos Pérez, Leandro S. Almeida
Publikováno v:
Repositorio Institucional de la Universidad de Burgos (RIUBU)
instname
Applied Sciences, Vol 11, Iss 6157, p 6157 (2021)
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Applied Sciences
Volume 11
Issue 13
instname
Applied Sciences, Vol 11, Iss 6157, p 6157 (2021)
Repositório Científico de Acesso Aberto de Portugal
Repositório Científico de Acesso Aberto de Portugal (RCAAP)
instacron:RCAAP
Applied Sciences
Volume 11
Issue 13
In recent decades, the use of technological resources such as the eye tracking methodology is providing cognitive researchers with important tools to better understand the learning process. However, the interpretation of the metrics requires the use