Zobrazeno 1 - 10
of 76
pro vyhledávání: '"Isabelle Chalendar"'
One of the major unsolved problems in operator theory is the fifty-year-old invariant subspace problem, which asks whether every bounded linear operator on a Hilbert space has a nontrivial closed invariant subspace. This book presents some of the maj
Autor:
Isabelle Chalendar, Wolfgang Arendt
Publikováno v:
Complex Analysis and Spectral Theory. :273-280
Publikováno v:
Illinois Journal of Mathematics.
Autor:
George R. Exner, Isabelle Chalendar
Publikováno v:
Computational Methods and Function Theory. 19:193-225
Let $$\varphi $$ be a linear fractional transformation mapping the unit disk $$\mathbb {D}$$ into itself and fixing 1, and let $$C_\varphi $$ be the usual composition operator induced by $$\varphi $$ on the Hardy space $$H^2(\mathbb {D})$$ . For a po
Publikováno v:
Studia Mathematica. 248:233-253
Publikováno v:
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2022, 42 (1), pp.165-198
HAL
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2020
IMA Journal of Numerical Analysis, Oxford University Press (OUP), 2022, 42 (1), pp.165-198
HAL
In this paper we study the conforming Galerkin approximation of the problem: find $u\in{{\mathcal{U}}}$ such that $a(u,v) = \langle L, v \rangle $ for all $v\in{{\mathcal{V}}}$, where ${{\mathcal{U}}}$ and ${{\mathcal{V}}}$ are Hilbert or Banach spac
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::9881912175f72f1119f6389965312d6c
https://hal.archives-ouvertes.fr/hal-02264895v3/document
https://hal.archives-ouvertes.fr/hal-02264895v3/document
Autor:
Isabelle Chalendar, Wolfgang Arendt
Publikováno v:
Israel Journal of Mathematics. 229:165-179
Let $A$ be the generator of a $C_0$-semigroup $T$ on a Banach space of analytic functions on the open unit disc. If $T$ consists of composition operators, then there exists a holomorphic function $G:{\mathbb D}\to{\mathbb C}$ such that $Af=Gf'$ with
Asymptotic behavior of the powers of composition operators on Banach spaces of holomorphic functions
Publikováno v:
Indiana University Mathematics Journal. 67:1571-1595
Let φ : D → D be a holomorphic map with a fixed point α ∈ D such that 0 ≤ | φ ′ ( α ) | 1 . We show that the spectrum of the composition operator C φ on the Frechet space Hol ( D ) is { 0 } ∪ { φ ′ ( α ) n : n = 0 , 1 , ⋯ } and i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::490f6adccb4b95e4b893aa03ce20deb6
https://hal.archives-ouvertes.fr/hal-02065450v2/document
https://hal.archives-ouvertes.fr/hal-02065450v2/document
Publikováno v:
Recent Progress on Operator Theory and Approximation in Spaces of Analytic Functions. :59-77