Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Isaac Afara"'
Preclassification of Broadband and Sparse Infrared Data by Multiplicative Signal Correction Approach
Autor:
Hafeez Ur Rehman, Valeria Tafintseva, Boris Zimmermann, Johanne Heitmann Solheim, Vesa Virtanen, Rubina Shaikh, Ervin Nippolainen, Isaac Afara, Simo Saarakkala, Lassi Rieppo, Patrick Krebs, Polina Fomina, Boris Mizaikoff, Achim Kohler
Publikováno v:
Molecules, Vol 27, Iss 7, p 2298 (2022)
Preclassification of raw infrared spectra has often been neglected in scientific literature. Separating spectra of low spectral quality, due to low signal-to-noise ratio, presence of artifacts, and low analyte presence, is crucial for accurate model
Externí odkaz:
https://doaj.org/article/eea06b96c0db4d5bade7568c82eea9e1
Autor:
Valeria Tafintseva, Tiril Aurora Lintvedt, Johanne Heitmann Solheim, Boris Zimmermann, Hafeez Ur Rehman, Vesa Virtanen, Rubina Shaikh, Ervin Nippolainen, Isaac Afara, Simo Saarakkala, Lassi Rieppo, Patrick Krebs, Polina Fomina, Boris Mizaikoff, Achim Kohler
Publikováno v:
Molecules, Vol 27, Iss 3, p 873 (2022)
The aim of the study was to optimize preprocessing of sparse infrared spectral data. The sparse data were obtained by reducing broadband Fourier transform infrared attenuated total reflectance spectra of bovine and human cartilage, as well as of simu
Externí odkaz:
https://doaj.org/article/bf64082d8d3a4264ab140f39e02cb289
Autor:
Iman Kafian-Attari, Ervin Nippolainen, Florian Bergmann, Arash Mirhashemi, Petri Pakkari, Florian Foschum, Alwin Kienle, Juha Töyräs, Isaac Afara
Publikováno v:
Biomedical Optics Express.
Preclassification of Broadband and Sparse Infrared Data by Multiplicative Signal Correction Approach
Autor:
Hafeez Ur Rehman, Valeria Tafintseva, Boris Zimmermann, Johanne Heitmann Solheim, Vesa Virtanen, Rubina Shaikh, Ervin Nippolainen, Isaac Afara, Simo Saarakkala, Lassi Rieppo, Patrick Krebs, Polina Fomina, Boris Mizaikoff, Achim Kohler
Publikováno v:
Molecules; Volume 27; Issue 7; Pages: 2298
Molecules
Molecules
Preclassification of raw infrared spectra has often been neglected in scientific literature. Separating spectra of low spectral quality, due to low signal-to-noise ratio, presence of artifacts, and low analyte presence, is crucial for accurate model