Zobrazeno 1 - 10
of 118
pro vyhledávání: '"Iritani, Hiroshi"'
We investigate Gamma conjecture I and its underlying Conjecture $\mathcal{O}$ for the $\mathbb{P}^1$-bundles $X_n=\mathbb{P}_{\mathbb{P}^{n}}(\mathcal{O}\oplus\mathcal{O}(n))$ with $n\ge 3$. We show that Conjecture $\mathcal{O}$ does not hold if $n$
Externí odkaz:
http://arxiv.org/abs/2405.16979
Autor:
Iritani, Hiroshi
Hodge-theoretic mirror symmetry for a Calabi-Yau mirror pair says that the variation of Hodge structure arising from quantum cohomology of a Calabi-Yau manifold and that arising from deformation of complex structures on the dual Calabi-Yau manifold c
Externí odkaz:
http://arxiv.org/abs/2307.15946
Autor:
Iritani, Hiroshi
The Gamma-class is a characteristic class for complex manifolds with transcendental coefficients. It defines an integral structure of quantum cohomology, or more precisely, an integral lattice in the space of flat sections of the quantum connection.
Externí odkaz:
http://arxiv.org/abs/2307.15938
Autor:
Iritani, Hiroshi
The mirror symmetric Gamma conjecture roughly speaking says that the Gamma class of a manifold determines the asymptotics of (exponential) periods of the mirror. We recast the method in [Iri11] in a more general context and show that the mirror symme
Externí odkaz:
http://arxiv.org/abs/2307.15940
Autor:
Iritani, Hiroshi
Publikováno v:
Handbook of Mirror Symmetry for Calabi-Yau manifolds and Fano manifolds, ALM47, 131-147, (2019)
We review mirror symmetry for the quantum cohomology D-module of a compact weak-Fano toric manifold. We also discuss the relationship to the GKZ system, the Stanley-Reisner ring, the Mellin-Barnes integrals, and the Gamma-integral structure.
Com
Com
Externí odkaz:
http://arxiv.org/abs/2307.15935
Autor:
Iritani, Hiroshi
We prove a decomposition theorem of the quantum cohomology D-module of the blowup of a smooth projective variety X along a smooth subvariety Z. The main tools we use are shift operators and Fourier analysis for equivariant quantum cohomology.
Co
Co
Externí odkaz:
http://arxiv.org/abs/2307.13555
Autor:
Iritani, Hiroshi, Koto, Yuki
We construct an I-function of the projective bundle P(V) associated with a not necessarily split vector bundle V\to B as a Fourier transform of the S^1-equivariant J-function of the total space of V and show that it lies on the Givental Lagrangian co
Externí odkaz:
http://arxiv.org/abs/2307.03696
Autor:
Iritani, Hiroshi
Publikováno v:
Advances in Theoretical and Mathematical Physics Volume 26 (2022) Number 5 pp.1239-1245
Recently B\"onisch-Fischbach-Klemm-Nega-Safari discovered, via numerical computation, that the leading asymptotics of the l-loop Banana Feynman amplitude at the large complex structure limit can be described by the Gamma class of a degree (1,...,1) F
Externí odkaz:
http://arxiv.org/abs/2011.05901
Autor:
Iritani, Hiroshi
Publikováno v:
SIGMA 16 (2020), 032, 111 pages
We introduce a global Landau-Ginzburg model which is mirror to several toric Deligne-Mumford stacks and describe the change of the Gromov-Witten theories under discrepant transformations. We prove a formal decomposition of the quantum cohomology D-mo
Externí odkaz:
http://arxiv.org/abs/1906.00801
Publikováno v:
Geom. Topol. 24 (2020) 2547-2602
We propose a new method to compute asymptotics of periods using tropical geometry, in which the Riemann zeta values appear naturally as error terms in tropicalization. Our method suggests how the Gamma class should arise from the Strominger-Yau-Zaslo
Externí odkaz:
http://arxiv.org/abs/1809.02177