Zobrazeno 1 - 10
of 27
pro vyhledávání: '"Irina V. Menshova"'
Publikováno v:
Mathematics and Mechanics of Solids. 27:2551-2566
We present the formulas that describe the exact solutions of the boundary value problems in the theory of elasticity for a half-strip and a rectangle in which the horizontal sides are firmly clamped, while normal and tangential stresses are specified
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 102
Publikováno v:
Mathematics and Mechanics of Solids. 27:250-261
We construct examples of exact solutions of the temperature problem for a square: the sides of the square are (i) free and (ii) firmly clamped. Initially, we solve the inhomogeneous problem for an infinite plane. The known exact solutions for a squar
Publikováno v:
Mathematics and Mechanics of Solids. 26:1565-1580
We construct exact solutions of two inhomogeneous boundary value problems in the theory of elasticity for a half-strip with free long sides in the form of series in Papkovich–Fadle eigenfunctions: (a) the half-strip end is free and (b) the half-str
Publikováno v:
International Journal of Engineering and Technology. :224-229
Autor:
Alexander P. Kerzhaev, Irina V. Menshova, M. D. Kovalenko, Denis Aleksandrovich Abrukov, Evgeny Mihajlovich Zveryayev
Publikováno v:
Keldysh Institute Preprints. :1-17
Autor:
Alexander P. Kerzhaev, Denis Aleksandrovich Abrukov, Evgeny Mihajlovich Zveryayev, Irina V. Menshova, M. D. Kovalenko
Publikováno v:
Keldysh Institute Preprints. :1-28
Publikováno v:
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 101
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 71
We derive the formulas that describe the exact solution of the boundary value problem in the theory of elasticity for a rectangle in which two opposite (horizontal) sides are free and stresses are specified (all cases of symmetry relative to the cent
Publikováno v:
Zeitschrift für angewandte Mathematik und Physik. 71
In the 1950s, the method of initial functions (MIF) was developed in the Soviet Union. It rapidly became popular among research scientists, civil engineers, and, later, among strength engineers engaged in the aerospace industry. Since the MIF is know