Zobrazeno 1 - 10
of 77
pro vyhledávání: '"Irina Rish"'
Autor:
Mohammad-Javad Darvishi-Bayazi, Andrew Law, Sergio Mejia Romero, Sion Jennings, Irina Rish, Jocelyn Faubert
Publikováno v:
Scientific Reports, Vol 13, Iss 1, Pp 1-9 (2023)
Abstract Aviation safety depends on the skill and expertise of pilots to meet the task demands of flying an aircraft in an effective and efficient manner. During flight training, students may respond differently to imposed task demands based on indiv
Externí odkaz:
https://doaj.org/article/a417e1f8f2a0411b973fbcffb1f79c94
Autor:
Mahta Ramezanian-Panahi, Germán Abrevaya, Jean-Christophe Gagnon-Audet, Vikram Voleti, Irina Rish, Guillaume Dumas
Publikováno v:
Frontiers in Artificial Intelligence, Vol 5 (2022)
This review article gives a high-level overview of the approaches across different scales of organization and levels of abstraction. The studies covered in this paper include fundamental models in computational neuroscience, nonlinear dynamics, data-
Externí odkaz:
https://doaj.org/article/ca9644f48ac04a5c81c2720413db091a
Baseline multimodal information predicts future motor impairment in premanifest Huntington's disease
Autor:
Eduardo Castro, Pablo Polosecki, Irina Rish, Dorian Pustina, John H. Warner, Andrew Wood, Cristina Sampaio, Guillermo A. Cecchi
Publikováno v:
NeuroImage: Clinical, Vol 19, Iss , Pp 443-453 (2018)
In Huntington's disease (HD), accurate estimates of expected future motor impairments are key for clinical trials. Individual prognosis is only partially explained by genetics. However, studies so far have focused on predicting the time to clinical d
Externí odkaz:
https://doaj.org/article/909389c205d04a9b9f58108aa89c616f
Autor:
Mina Gheiratmand, Irina Rish, Guillermo A. Cecchi, Matthew R. G. Brown, Russell Greiner, Pablo I. Polosecki, Pouya Bashivan, Andrew J. Greenshaw, Rajamannar Ramasubbu, Serdar M. Dursun
Publikováno v:
npj Schizophrenia, Vol 3, Iss 1, Pp 1-12 (2017)
Neuroimaging: Brain connectivity pattern predicts symptom severity Brain network analyses from functional magnetic resonance imaging (fMRI) data may help diagnose schizophrenia and predict symptom severity. Detecting neuroimaging patterns requires la
Externí odkaz:
https://doaj.org/article/c2d7e64345e8436c975666a48119346f
Autor:
David C Haws, Irina Rish, Simon Teyssedre, Dan He, Aurelie C Lozano, Prabhanjan Kambadur, Zivan Karaman, Laxmi Parida
Publikováno v:
PLoS ONE, Vol 10, Iss 10, p e0138903 (2015)
Accurate prediction of complex traits based on whole-genome data is a computational problem of paramount importance, particularly to plant and animal breeders. However, the number of genetic markers is typically orders of magnitude larger than the nu
Externí odkaz:
https://doaj.org/article/dfb111ba3d6245878befd4ab374e027e
Autor:
Irina Rish, Guillermo Cecchi, Benjamin Thyreau, Bertrand Thirion, Marion Plaze, Marie Laure Paillere-Martinot, Catherine Martelli, Jean-Luc Martinot, Jean-Baptiste Poline
Publikováno v:
PLoS ONE, Vol 8, Iss 1, p e50625 (2013)
Schizophrenia is a psychiatric disorder that has eluded characterization in terms of local abnormalities of brain activity, and is hypothesized to affect the collective, "emergent" working of the brain. Indeed, several recent publications have demons
Externí odkaz:
https://doaj.org/article/9b43b1644e694846bb18c77b3cdee439
Autor:
Guillermo A Cecchi, Lejian Huang, Javeria Ali Hashmi, Marwan Baliki, María V Centeno, Irina Rish, A Vania Apkarian
Publikováno v:
PLoS Computational Biology, Vol 8, Iss 10, p e1002719 (2012)
While the static magnitude of thermal pain perception has been shown to follow a power-law function of the temperature, its dynamical features have been largely overlooked. Due to the slow temporal experience of pain, multiple studies now show that t
Externí odkaz:
https://doaj.org/article/4623ee1eb7ca4598b34b0b99f186bca6
Publikováno v:
ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Publikováno v:
Journal of Biomechanics. 154:111606
Autor:
Guillaume Dumas, James R. Kozloski, Guillaume Lajoie, Silvina Ponce Dawson, Aleksandr Y. Aravkin, David D. Cox, Peng Zheng, Pablo Polosecki, German Abrevaya, Jean-Christophe Gagnon-Audet, Irina Rish, Guillermo A. Cecchi
Publikováno v:
Neural Computation. 33:2087-2127
Many natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networ