Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Irina Goryuchkina"'
Autor:
Vladimir Dragović, Irina Goryuchkina
Publikováno v:
Archive for History of Exact Sciences. 74:523-564
Here, we study the genesis and evolution of geometric ideas and techniques in investigations of movable singularities of algebraic ordinary differential equations. This leads us to the work of Mihailo Petrovic on algebraic differential equations and
Autor:
Vladimir Dragović, Irina Goryuchkina
Publikováno v:
Bulletin of the American Mathematical Society. 57:293-299
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
Journal of Dynamical and Control Systems. 26:149-158
Here, we present some complements to theorems of R. Gerard and Y. Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their most known results concern completely integrable systems with
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
Математический сборник. 210:3-18
Предлагается достаточное условие сходимости ряда Дюлака, формально удовлетворяющего алгебраическому обыкновенному дифференциальном
The existence, uniqueness and convergence of formal Puiseux series solutions of non-autonomous algebraic differential equations of first order at a nonsingular point of the equation is studied, including the case where the celebrated Painleve theorem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1ee20a7e6a2fbcd08a1a0ac834ff85ba
http://arxiv.org/abs/2008.02982
http://arxiv.org/abs/2008.02982
Publikováno v:
e_Buah Biblioteca Digital Universidad de Alcalá
instname
instname
A sufficient condition for the convergence of a generalized formal power series solution to an algebraic q-difference equation is provided. The main result leans on a geometric property related to the semi-group of (complex) power exponents of such a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::043f1c2145676ccc546b7ec052aec52b
Autor:
Irina Goryuchkina, Renat Gontsov
Publikováno v:
manuscripta mathematica. 156:171-185
There is proposed the Maillet–Malgrange type theorem for a generalized power series (having complex power exponents) formally satisfying an algebraic ordinary differential equation. The theorem describes the growth of the series coefficients.
Autor:
Renat Gontsov, Irina Goryuchkina
Publikováno v:
Asymptotic Analysis. 93:311-325
We propose a sufficient condition of the convergence of a generalized power series formally satisfying an algebraic (polynomial) ordinary differential equation. The proof is based on the majorant method.
10 pages
10 pages
Methods of Power Geometry in Asymptotic Analysis of Solutions to Algebraic or Differential Equations
Autor:
Irina Goryuchkina, Vladimir Dobrev
Publikováno v:
AIP Conference Proceedings.
Here we present some basic ideas of the plane Power Geometry to study asymptotic behavior of solutions to differential equations. We consider two examples for demonstration of these methods and two applications the methods.