Zobrazeno 1 - 10
of 25
pro vyhledávání: '"Irina Gelbukh"'
Autor:
Irina Gelbukh
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-23
The Reeb graph of a circle-valued function is a topological space obtained by contracting connected components of level sets (preimages of points) to points. For some smooth functions, the Reeb graph has the structure of a finite graph. This notion f
Autor:
Irina Gelbukh
Publikováno v:
Topological Methods in Nonlinear Analysis. :1-20
We show that for a given finite graph $G$ without loop edges and isolated vertices, there exists an embedding of a closed orientable surface in $\mathbb{R}^3$ such that the Reeb graph of the associated height function has the structure of $G$. In par
Publikováno v:
Computación y Sistemas. 27
Autor:
Irina Gelbukh
Publikováno v:
Studia Scientiarum Mathematicarum Hungarica. 59:1-16
We prove criteria for a graph to be the Reeb graph of a function of a given class on a closed manifold: Morse–Bott, round, and in general smooth functions whose critical set consists of a finite number of submanifolds. The criteria are given in ter
Autor:
Irina Gelbukh
Publikováno v:
Monatshefte für Mathematik. 198:61-77
Autor:
Amir Yelenov, Alexandr A. Pak, Atabay A. A. Ziyaden, Iskander Akhmetov, Alexander Gelbukh, Irina Gelbukh
Publikováno v:
Computación y Sistemas. 26
Autor:
Irina Gelbukh
Publikováno v:
Mathematica Slovaca. 71:757-772
We prove that a finite graph (allowing loops and multiple edges) is homeomorphic (isomorphic up to vertices of degree two) to the Reeb graph of a Morse–Bott function on a smooth closed n-manifold, for any dimension n ≥ 2. The manifold can be chos
Autor:
Irina Gelbukh
Publikováno v:
Czechoslovak Mathematical Journal. 71:865-880
We study Morse-Bott functions with two critical values (equivalently, non-constant without saddles) on closed surfaces. We show that only four surfaces admit such functions (though in higher dimensions, we construct many such manifolds, e.g. as fiber
Publikováno v:
Advances in Computational Intelligence ISBN: 9783031194955
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::e017fbb6575350cc437ff0d3e83b1a03
https://doi.org/10.1007/978-3-031-19496-2_17
https://doi.org/10.1007/978-3-031-19496-2_17
Autor:
Irina Gelbukh
Publikováno v:
Filomat. 33:2031-2049
For a connected locally path-connected topological space $X$ and a continuous function $f$ on it such that its Reeb graph $R_f$ is a finite topological graph, we show that the cycle rank of $R_f$, i.e., the first Betti number $b_1(R_f)$, in computati