Zobrazeno 1 - 8
of 8
pro vyhledávání: '"Irina Astashova"'
Autor:
Irina Astashova
Publikováno v:
Mathematical Modelling and Analysis, Vol 21, Iss 4 (2016)
The asymptotic behavior of all solutions to the fourth-order Emden– Fowler type differential equation with singular nonlinearity is investigated. The equation is transformed into a system on the three-dimensional sphere. By investigation of the asy
Externí odkaz:
https://doaj.org/article/001bd3ceb8cc4d19af8b6617b2222e3b
Publikováno v:
Advances in Nonlinear Analysis. 11:1598-1613
The existence of unbounded solutions and their asymptotic behavior is studied for higher order differential equations considered as perturbations of certain linear differential equations. In particular, the existence of solutions with polynomial-like
Publikováno v:
2022 7th International Conference on Mathematics and Computers in Sciences and Industry (MCSI).
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9789811662966
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::5f8106ad1438f9b98b8c5ac714374902
https://doi.org/10.1007/978-981-16-6297-3_16
https://doi.org/10.1007/978-981-16-6297-3_16
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 14:4159
The paper studies the asymptotic behaviour of solutions to a second-order non-linear discrete equation of Emden–Fowler type \begin{document}$ \Delta^2 u(k) \pm k^\alpha u^m(k) = 0 $\end{document} where \begin{document}$ u\colon \{k_0, k_0+1, \dots\
Autor:
Irina Astashova
Publikováno v:
Mathematica Bohemica. 140:479-488
For the equation $$ y^{(n)}+|y|^{k}\mathop {\rm sgn} y=0,\quad k>1,\ n=3,4, $$ existence of oscillatory solutions $$ y=(x^*-x)^{-\alpha } h(\log (x^*-x)),\quad \alpha =\frac {n}{k-1},\ x 1,\ n=12,13,14. $$
Autor:
Irina Astashova1,2 ast@diffiety.ac.ru
Publikováno v:
Boundary Value Problems. Sep2014, Vol. 2014, p1-8. 8p.
Autor:
Irina Astashova
Publikováno v:
Mathematica Bohemica. 135:373-382
Sufficient conditions are formulated for existence of non-oscillatory solutions to the equation $$y^{(n)}+\sum _{j=0}^{n-1}a_j(x)y^{(j)}+p(x)|y|^k \mathop {\rm sgn} y =0$$ with $ n\ge 1$, real (not necessarily natural) $k>1$, and continuous functions