Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Irene Marín-Gayte"'
Publikováno v:
Journal of the Franklin Institute. 358:2846-2871
This paper is devoted to the theoretical and numerical analysis of the null controllability of a quasi-linear parabolic equation. First, we establish a local controllability result. The proof relies on an appropriate inverse function argument. Then,
Publikováno v:
Communications on Pure & Applied Analysis. 19:2101-2126
This article deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems. More precisely, we look for Pareto equilibria associated to standar
This paper deals with the solution of some multi-objective optimal control problems for several PDEs: linear and semilinear elliptic equations and stationary Navier-Stokes systems. Specifically, we look for Nash equilibria associated with standard co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4078d79a538e47ce53cbeaf7215438e7
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, In press
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, inPress
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, 2021, 27, pp.63. ⟨10.1051/cocv/2021062⟩
ESAIM: Control, Optimisation and Calculus of Variations, In press
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, inPress
ESAIM: Control, Optimisation and Calculus of Variations, EDP Sciences, In press
The null distributed controllability of the semilinear heat equation ∂ty − Δy + g(y) = f 1ω assuming that g ∈ C1(ℝ) satisfies the growth condition lim sup|r|→∞g(r)∕(|r|ln3∕2|r|) = 0 has been obtained by Fernández-Cara and Zuazua (2
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::51a79685a848151b9fd1535145a1cea6
https://hal.archives-ouvertes.fr/hal-02922784v1/file/NonlinearLS-H-1-25-08-2020.pdf
https://hal.archives-ouvertes.fr/hal-02922784v1/file/NonlinearLS-H-1-25-08-2020.pdf
Publikováno v:
idUS. Depósito de Investigación de la Universidad de Sevilla
instname
instname
We prove that the limits of the semi-discrete and the discrete semi-implicit Euler schemes for the 3D Navier-Stokes equations upplemented with Dirichlet boundary conditions are suitable in the sense of Scheffer. This provides a new proof of the exist
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a83c7d96ab1c97d097fa02f3f6fad3e6
Autor:
Irene Marín-Gayte
Publikováno v:
Irene Marín-Gayte
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::c7ec0e496bacae4a20799a1a1b4eff58
https://hal.archives-ouvertes.fr/hal-02922784
https://hal.archives-ouvertes.fr/hal-02922784