Zobrazeno 1 - 10
of 302
pro vyhledávání: '"Irène, Buvat"'
Autor:
Babak, Saboury, Tyler, Bradshaw, Ronald, Boellaard, Irène, Buvat, Joyita, Dutta, Mathieu, Hatt, Abhinav K, Jha, Quanzheng, Li, Chi, Liu, Helena, McMeekin, Michael A, Morris, Neeta, Pandit-Taskar, Peter J H, Scott, Eliot, Siegel, John J, Sunderland, Richard L, Wahl, Sven, Zuehlsdorff, Arman, Rahmim
Publikováno v:
Saboury, B, Bradshaw, T, Boellaard, R, Buvat, I, Dutta, J, Hatt, M, Jha, A K, Li, Q, Liu, C, McMeekin, H, Morris, M A, Scott, P J H, Siegel, E, Sunderland, J J, Pandit-Taskar, N, Wahl, R L, Zuehlsdorff, S & Rahmim, A 2023, ' Artificial Intelligence in Nuclear Medicine : Opportunities, Challenges, and Responsibilities Toward a Trustworthy Ecosystem ', Journal of nuclear medicine : official publication, Society of Nuclear Medicine, vol. 64, no. 2, pp. 188-196 . https://doi.org/10.2967/jnumed.121.263703
Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 64(2), 188-196
Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 64(2), 188-196
Trustworthiness is a core tenet of medicine. The patient-physician relationship is evolving from a dyad to a broader ecosystem of healthcare. With the emergence of artificial intelligence (AI) in medicine, the elements of trust must be revisited. We
Autor:
Maxime Lacroix, Frédérique Frouin, Anne-Sophie Dirand, Christophe Nioche, Fanny Orlhac, Jean-François Bernaudin, Pierre-Yves Brillet, Irène Buvat
Publikováno v:
Frontiers in Oncology, Vol 10 (2020)
Purpose: To design and validate a preprocessing procedure dedicated to T2-weighted MR images of lung cancers so as to improve the ability of radiomic features to distinguish between adenocarcinoma and other histological types.Materials and Methods: A
Externí odkaz:
https://doaj.org/article/9297a02525214706866795998926a69f
Autor:
Irène Buvat, Wolfgang Weber
Publikováno v:
Journal of Nuclear Medicine. 64:505-507
Autor:
Agathe, Peltier, Romain-David, Seban, Irène, Buvat, François-Clément, Bidard, Fatima, Mechta-Grigoriou
Publikováno v:
Seminars in Cancer Biology
Seminars in Cancer Biology, 2022, 86 (Pt 3), pp.262-272. ⟨10.1016/j.semcancer.2022.04.008⟩
Seminars in Cancer Biology, 2022, 86 (Pt 3), pp.262-272. ⟨10.1016/j.semcancer.2022.04.008⟩
International audience; Cancer-Associated Fibroblasts (CAFs) represent the most prominent component of the tumor microenvironment (TME). Recent studies demonstrated that CAF are heterogeneous and composed of different subpopulations exerting distinct
Autor:
Irène Buvat, Frédérique Frouin, Michael Soussan, Claire Pellot-Barakat, Charlotte Robert, Jessica Goya-Outi, Sylvain Reuzé, Sarah Boughdad, Fanny Orlhac, Christophe Nioche
Distribution of SUVpeak, Entropy, HGZE, and SRE in healthy tissues and in tumors as a function of the voxel size: in blue for 4x4x4 mm3, in green for 2x2x2 mm3 and in pink for 1x1x1 mm3.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::077cc63a3d0e7be012734c0cd8de8323
https://doi.org/10.1158/0008-5472.22420539
https://doi.org/10.1158/0008-5472.22420539
Autor:
Irène Buvat, Frédérique Frouin, Michael Soussan, Claire Pellot-Barakat, Charlotte Robert, Jessica Goya-Outi, Sylvain Reuzé, Sarah Boughdad, Fanny Orlhac, Christophe Nioche
Textural and shape analysis is gaining considerable interest in medical imaging, particularly to identify parameters characterizing tumor heterogeneity and to feed radiomic models. Here, we present a free, multiplatform, and easy-to-use freeware call
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::478d1fbc546f41f4d12dc51d6a1f5d02
https://doi.org/10.1158/0008-5472.c.6510678.v1
https://doi.org/10.1158/0008-5472.c.6510678.v1
Autor:
Irène Buvat, Frédérique Frouin, Michael Soussan, Claire Pellot-Barakat, Charlotte Robert, Jessica Goya-Outi, Sylvain Reuzé, Sarah Boughdad, Fanny Orlhac, Christophe Nioche
A real-time complete example of radiomic feature calculation from a PET/MR scan, where the same volumes of interest are used to extract PET and MR radiomic features.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::28e65b01ab19af35cf2de9978d33faeb
https://doi.org/10.1158/0008-5472.22420542.v1
https://doi.org/10.1158/0008-5472.22420542.v1
Autor:
Irène Buvat, Frédérique Frouin, Michael Soussan, Claire Pellot-Barakat, Charlotte Robert, Jessica Goya-Outi, Sylvain Reuzé, Sarah Boughdad, Fanny Orlhac, Christophe Nioche
Well-known software programs that enable the calculation of radiomic features and associated characteristics.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::189d6acf4e31ee29cd72d9ca667e2806
https://doi.org/10.1158/0008-5472.22420536.v1
https://doi.org/10.1158/0008-5472.22420536.v1
Autor:
Anne Ségolène Cottereau, Louis Rebaud, Judith Trotman, Pierre Feugier, Loretta J. Nastoupil, Emmanuel Bachy, Ian W. Flinn, Corinne Haioun, Loic Ysebaert, Nancy L. Bartlett, Hervé Tilly, René-Olivier Casasnovas, Romain Ricci, Cedric Portugues, Irène Buvat, Michel Meignan, Franck Morschhauser
Publikováno v:
Blood. 140:6474-6476
Autor:
Thibault Escobar, Sébastien Vauclin, Fanny Orlhac, Christophe Nioche, Pascal Pineau, Laurence Champion, Hervé Brisse, Irène Buvat
Publikováno v:
Medical Physics
Medical Physics, 2022, 49 (6), pp.3816-3829. ⟨10.1002/mp.15603⟩
Medical Physics, 2022, 49 (6), pp.3816-3829. ⟨10.1002/mp.15603⟩
International audience; Background: Translation of predictive and prognostic image-based learning models to clinical applications are challenging due in part to their lack of interpretability. Some deep-learningbased methods provide information about