Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Ion Zaballa"'
Publikováno v:
Linear Algebra and its Applications. 624:214-246
Given a square matrix, F, the geometry of the set of control matrices G such that the linear time-invariant controllable system ( F , G ) has prescribed controllability or, equivalently, Brunovsky indices is investigated. This set is proved to be a d
Publikováno v:
Linear Algebra and its Applications. 623:14-67
A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices
Autor:
Ion Zaballa, Peter Lancaster
Publikováno v:
The Electronic Journal of Linear Algebra. 37:211-246
Many physical problems require the spectral analysis of quadratic matrix polynomials $M\lambda^2+D\lambda +K$, $\lambda \in \mathbb{C}$, with $n \times n$ Hermitian matrix coefficients, $M,\;D,\;K$. In this largely expository paper, we present and di
Autor:
Ion Zaballa, Kenier Castillo
Publikováno v:
Addi. Archivo Digital para la Docencia y la Investigación
instname
instname
For an eigenvalue lambda(0) of a Hermitian matrix A, the formula of Thompson and McEnteggert gives an explicit expression of the adjugate of lambda I-0 - A, Adj(lambda I-0 - A), in terms of eigenvectors of Afor lambda(0) and all its eigenvalues. In t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a86032b2e90caa2def9207642a9cda82
http://hdl.handle.net/10810/55472
http://hdl.handle.net/10810/55472
Publikováno v:
Linear Algebra and its Applications. 513:1-32
A criterion is presented that characterizes when two matrix polynomials of any size, rank and degree have the same finite and infinite elementary divisors. This characterization inherits a coprimeness condition of the extended unimodular equivalence
Publikováno v:
Applied Mathematics and Computation. 391:125672
Three criteria are given to characterize when two linear dynamical systems have the same spectral structure (same finite and infinite elementary divisors). They are allowed to have different orders or sizes and their leading coefficient may be singul
Publikováno v:
Linear Algebra and its Applications. 507:1-31
The concept of coprimeness of matrices with elements in a field of fractions is introduced. We focus on the field of rational functions and define when two rational matrices are coprime with respect to different rings. The definition of coprimeness a
Publikováno v:
e-Archivo: Repositorio Institucional de la Universidad Carlos III de Madrid
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
Universidad Carlos III de Madrid (UC3M)
e-Archivo. Repositorio Institucional de la Universidad Carlos III de Madrid
instname
This paper defines for the first time strong linearizations of arbitrary rational matrices, studies in depth properties and diferent characterizations of such linear matrix pencils, and develops infinitely many examples of strong linearizations that
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7ed5fd2a72dcee0657c4c76e10a80590
http://hdl.handle.net/10016/32196
http://hdl.handle.net/10016/32196
Publikováno v:
Operator Theory: Advances and Applications ISBN: 9783319724485
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::1d064e58670fd99df5f13beb3bc6b1fb
https://doi.org/10.1007/978-3-319-72449-2
https://doi.org/10.1007/978-3-319-72449-2
Autor:
Peter Lancaster, Ion Zaballa
Publikováno v:
SIAM Journal on Matrix Analysis and Applications. 35:254-278
The detailed spectral structure of symmetric, algebraic, quadratic eigenvalue problems has been developed recently. In this paper we take advantage of these canonical forms to provide a detailed analysis of inverse problems of the following form: con