Zobrazeno 1 - 10
of 32
pro vyhledávání: '"Ioannis Chrysikos"'
Publikováno v:
Annali di Matematica Pura ed Applicata (1923 -). 201:2603-2662
Autor:
Ioannis Chrysikos
Publikováno v:
Communications in Mathematics, Vol 29, Iss 3, Pp 385-393 (2021)
We study the volume of compact Riemannian manifolds which are Einstein with respect to a metric connection with (parallel) skew-torsion. We provide a result for the sign of the first variation of the volume in terms of the corresponding scalar curvat
Autor:
Ioannis Chrysikos, Stavros Anastassiou
Publikováno v:
Extracta Mathematicae. 36:99-145
For any flag manifold $M=G/K$ of a compact simple Lie group $G$ we describe non-collapsing ancient invariant solutions of the homogeneous unnormalized Ricci flow. Such solutions emerge from an invariant Einstein metric on $M$, and by [B\"oLS17] they
Publikováno v:
Analysis and Mathematical Physics. 12
Publikováno v:
Differential Geometry and its Applications. 84:101932
We study homogeneous Lorentzian manifolds $M = G/L$ of a connected reductive Lie group $G$ modulo a connected reductive subgroup $L$, under the assumption that $M$ is (almost) $G$-effective and the isotropy representation is totally reducible. We sho
Publikováno v:
Journal of Geometry and Physics. 138:257-284
This paper is devoted to a systematic study and classification of invariant affine or metric connections on certain classes of naturally reductive spaces. For any non-symmetric, effective, strongly isotropy irreducible 2 homogeneous Riemannian manifo
Publikováno v:
Transformation Groups. 24:659-689
We study spin structures on compact simply-connected homogeneous pseudo-Riemannian manifolds (M = G=H; g) of a compact semisimple Lie group G. We classify flag manifolds F = G/H of a compact simple Lie group which are spin. This yields also the class
Autor:
Ioannis Chrysikos
Publikováno v:
Advances in Applied Clifford Algebras. 27:3097-3127
Consider a Riemannian spin manifold $$(M^{n}, g)$$ $$(n\ge 3)$$ endowed with a non-trivial 3-form $$T\in \Lambda ^{3}T^{*}M$$ , such that $$\nabla ^{c}T=0$$ , where $$\nabla ^{c}:=\nabla ^{g}+\frac{1}{2}T$$ is the metric connection with skew-torsion
Autor:
Ioannis Chrysikos, Yusuke Sakane
Publikováno v:
Journal of Geometry and Physics. 160:103996
We study homogeneous Einstein metrics on indecomposable non-Kahler C-spaces, i.e. even-dimensional torus bundles M = G ∕ H with rank G > rank H over flag manifolds F = G ∕ K of a compact simple Lie group G . Based on the theory of painted Dynkin
Publikováno v:
International Journal of Mathematics. 31:2050060
We study compact, simply connected, homogeneous 8-manifolds admitting invariant Spin(7)-structures, classifying all canonical presentations G/H of such spaces, with G simply connected. For each presentation, we exhibit explicit examples of invariant