Zobrazeno 1 - 10
of 24
pro vyhledávání: '"Inyang, Udoh A."'
Model predictive control has gained popularity for its ability to satisfy constraints and guarantee robustness for certain classes of systems. However, for systems whose dynamics are characterized by a high state dimension, substantial nonlinearities
Externí odkaz:
http://arxiv.org/abs/2411.15929
Latent thermal energy storage (TES) devices could enable advances in many thermal management applications, including peak load shifting for reducing energy demand and cost of HVAC or providing supplemental heat rejection in transient thermal manageme
Externí odkaz:
http://arxiv.org/abs/2303.10120
Many dynamical systems, including thermal, fluid, and multi-agent systems, can be represented as weighted graphs. In this paper we consider whether the unstable states of such systems can be observed from limited discrete-time measurement, that is, w
Externí odkaz:
http://arxiv.org/abs/2209.13119
In this paper, we develop a predictive geometry control framework for jet-based additive manufacturing (AM) based on a physics-guided recurrent neural network (RNN) model. Because of its physically interpretable architecture, the model's parameters a
Externí odkaz:
http://arxiv.org/abs/2207.03556
Autor:
Vazquez-Mendoza, Oscar Vicente, Elghandour, Mona M.M.Y., Mariezcurrena Berasain, Maria A., Inyang, Udoh A., Jack, Akaninyene, Lackner, Maximilian, Salem, Abdelfattah Z.M.
Publikováno v:
In Journal of Agriculture and Food Research December 2024 18
Autor:
Uduak Inyang-Udoh, Sandipan Mishra
Publikováno v:
IEEE Transactions on Control Systems Technology. 30:1863-1875
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
In this paper, we develop a predictive geometry control framework for jet-based additive manufacturing (AM) based on a physics-guided recurrent neural network (RNN) model. Because of its physically interpretable architecture, the model's parameters a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e92baf90d5c2a27d3f5859e32993246
http://arxiv.org/abs/2207.03556
http://arxiv.org/abs/2207.03556
Publikováno v:
2022 American Control Conference (ACC).
Publikováno v:
IEEE/ASME Transactions on Mechatronics, 25(4):9108592, 1783-1793. Institute of Electrical and Electronics Engineers
This article develops and experimentally validates a distributed predictive control algorithm for closed-loop control of inkjet 3-D printing to handle constraints, e.g., droplet volume bounds, as well as the large-scale nature of the 3-D printing pro