Zobrazeno 1 - 10
of 231
pro vyhledávání: '"Invertible sheaf"'
Autor:
Hiromu Tanaka, Paolo Cascini
Publikováno v:
Proceedings of the London Mathematical Society. 121:617-655
Given an invertible sheaf on a fibre space between projective varieties of positive characteristic, we show that fibrewise semi-ampleness implies relative semi-ampleness. The same statement fails in characteristic zero.
52 pages. Final version t
52 pages. Final version t
Autor:
Brundu, Michela, Stillman, Mike
Publikováno v:
Transactions of the American Mathematical Society, 1993 Jun 01. 337(2), 677-690.
Externí odkaz:
https://www.jstor.org/stable/2154237
Autor:
Inder Kaur, Ananyo Dan
Publikováno v:
BIRD: BCAM's Institutional Repository Data
instname
instname
Let $\pi_1:\mathcal{X} \to \Delta$ be a flat family of smooth, projective curves of genus $g \ge 2$, degenerating to an irreducible nodal curve $X_0$ with exactly one node. Fix an invertible sheaf $\mathcal{L}$ on $\mathcal{X}$ of relative odd degree
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b79594dad6433c70648b7cf3f9594e83
http://arxiv.org/abs/2001.02303
http://arxiv.org/abs/2001.02303
Autor:
Yoshifumi Takeda
Publikováno v:
Springer Proceedings in Mathematics & Statistics ISBN: 9783030421359
The (pre-)Tango structure is a certain ample invertible sheaf of exact differential 1-forms on a projective algebraic variety and it implies some typical pathological phenomena in positive characteristic. Moreover, by using the notion of (pre-)Tango
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::6008e51e5150de86622e3950f3f92753
https://doi.org/10.1007/978-3-030-42136-6_12
https://doi.org/10.1007/978-3-030-42136-6_12
Autor:
Aldi Nestor de Souza, Frederico Sercio
Publikováno v:
Bulletin of the Brazilian Mathematical Society, New Series. 50:717-743
Let $C$ be a nodal curve and $L$ be an invertible sheaf on $C$. Let $\alpha_{L}:C\dashrightarrow J_{C}$ be the degree-$1$ rational Abel map, which takes a smooth point $Q\in C$ to $\left[ m_{Q}\otimes L\right] $ in the Jacobian of $C$. In this work w
Publikováno v:
Proceedings of the American Mathematical Society. 146:4139-4150
We give a K K -theoretic criterion for a quasi-projective variety to be smooth. If L \mathbb {L} is a line bundle corresponding to an ample invertible sheaf on X X , it suffices that K q ( X ) ≅ K q ( L ) K_q(X)\cong K_q(\mathbb {L}) for all q ≤
Autor:
V. V. Shokurov
Publikováno v:
Izvestiya: Mathematics. 81:827-887
We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finit
Autor:
Daniel Chan, Adam Nyman
Let $k$ be a field, let ${\sf C}$ be a $k$-linear abelian category, let $\underline{\mathcal{L}}:=\{\mathcal{L}_{i}\}_{i \in \mathbb{Z}}$ be a sequence of objects in ${\sf C}$, and let $B_{\underline{\mathcal{L}}}$ be the associated orbit algebra. We
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::244835d9b3dad02eeab8854cfec8cad2
Autor:
Carsten Bornträger, Matthias Nickel
Publikováno v:
Trends in Mathematics ISBN: 9783030000264
We prove the following result: for every totally real Galois number field K there exists a smooth projective variety X and a divisor D on X such that \(vol_X(D)\) is a primitive element of K.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::9a148adecef65fdc31ca6004a5c83457
https://doi.org/10.1007/978-3-030-00027-1_13
https://doi.org/10.1007/978-3-030-00027-1_13
Autor:
Atsushi Moriwaki
Publikováno v:
Algebra Number Theory 9, no. 2 (2015), 503-509
Let (L, h) be a pair of a semiample invertible sheaf and a semipositive continuous hermitian metric on a proper algebraic variety. In this paper, we prove that (L, h) is semiample metrized, which is a generalization of the question due to S. Zhang.