Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Invariant algebraic systems"'
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Let $\mathbf{K}$ be a field and $\phi$, $\mathbf{f} = (f_1, \ldots, f_s)$ in $\mathbf{K}[x_1, \dots, x_n]$ be multivariate polynomials (with $s < n$) invariant under the action of $\mathcal{S}_n$, the group of permutations of $\{1, \dots, n\}$. We co
Externí odkaz:
http://arxiv.org/abs/2009.00847
Publikováno v:
Faugère, Labahn, Safey El Din, Schost, Vu. Computing critical points for invariant algebraic systems. Jo
Externí odkaz:
https://hdl.handle.net/10037/28797
Autor:
Vu, Thi Xuan
Publikováno v:
Computer Science [cs]. Sorbonne Université (France); University of Waterloo (Canada), 2020. English
Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::2a728ed1cc9a37b389d10b30932f9f95
https://tel.archives-ouvertes.fr/tel-03098694/document
https://tel.archives-ouvertes.fr/tel-03098694/document
Autor:
Vu, Thi Xuan
Publikováno v:
Computer Science [cs]. Sorbonne Université (France); University of Waterloo (Canada), 2020. English
Multivariate polynomial systems arising in numerous applications have special structures. In particular, determinantal structures and invariant systems appear in a wide range of applications such as in polynomial optimization and related questions in
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=od______2592::2a728ed1cc9a37b389d10b30932f9f95
https://tel.archives-ouvertes.fr/tel-03098694/document
https://tel.archives-ouvertes.fr/tel-03098694/document
Publikováno v:
SIAM Journal on Optimization; 2023, Vol. 33 Issue 1, p63-88, 26p
Polynomial optimization is a fascinating field of study that has revolutionized the way we approach nonlinear problems described by polynomial constraints. The applications of this field range from production planning processes to transportation, ene