Zobrazeno 1 - 10
of 79
pro vyhledávání: '"Intensity forecast"'
Publikováno v:
Tropical Cyclone Research and Review, Vol 13, Iss 2, Pp 88-112 (2024)
This study examines the track and intensity forecasts of two typical Bay of Bengal tropical cyclones (TC) ASANI and MOCHA. The analysis of various Numerical Weather Prediction (NWP) model forecasts [ECMWF (European Centre for Medium range Weather For
Externí odkaz:
https://doaj.org/article/4068e93049e34354940617f01e66a8f1
Publikováno v:
Geophysical Research Letters, Vol 51, Iss 19, Pp n/a-n/a (2024)
Abstract The horizontal turbulence parameterization is vital for the intensity and structure forecasting of tropical cyclone (TC) in numerical weather prediction (NWP) models. The default two‐dimensional (2D) standard Smagorinsky model with a singl
Externí odkaz:
https://doaj.org/article/cdb7f5f5c9de4b9da935f19ee54824f1
Publikováno v:
Frontiers in Earth Science, Vol 12 (2024)
Tropical cyclone (TC) intensity forecasting poses challenges due to complex dynamical processes and data inadequacies during model initialization. This paper describes efforts to improve TC intensity prediction in the Geophysical Fluid Dynamics Labor
Externí odkaz:
https://doaj.org/article/bd0484da5d87430685ffc153673b742a
Autor:
Weiguo Wang, Zhan Zhang, John P. Cangialosi, Michael Brennan, Levi Cowan, Peter Clegg, Hosomi Takuya, Ikegami Masaaki, Ananda Kumar Das, Mrutyunjay Mohapatra, Monica Sharma, John A. Knaff, John Kaplan, Thomas Birchard, James D. Doyle, Julian Heming, Jonathan Moskaitis, William A. Komaromi, Suhong Ma, Charles Sampson, Liguang Wu, Eric Blake
Publikováno v:
Tropical Cyclone Research and Review, Vol 12, Iss 1, Pp 50-63 (2023)
This paper summarizes the progress and activities of tropical cyclone (TC) operational forecast centers during the last four years (2018–2021). It is part II of the review on TC intensity change from the operational perspective in the rapporteur re
Externí odkaz:
https://doaj.org/article/060412644fb74c58914bd728e1af17ae
Autor:
Zhan Zhang, Weiguo Wang, James D. Doyle, Jonathan Moskaitis, William A. Komaromi, Julian Heming, Linus Magnusson, John P. Cangialosi, Levi Cowan, Michael Brennan, Suhong Ma, Ananda Kumar Das, Hosomi Takuya, Peter Clegg, Thomas Birchard, John A. Knaff, John Kaplan, Mrutyunjay Mohapatra, Monica Sharma, Ikegami Masaaki, Liguang Wu, Eric Blake
Publikováno v:
Tropical Cyclone Research and Review, Vol 12, Iss 1, Pp 30-49 (2023)
This review summarizes the rapporteur report on tropical cyclone (TC) intensity change from the operational perspective, as presented to the 10th International Workshop on TCs (IWTC-10) held in Bali, Indonesia, from Dec. 5–9, 2022. The accuracy of
Externí odkaz:
https://doaj.org/article/cd9f54edd7e743da90a57d91ce6c5c16
Publikováno v:
Environmental Research Letters, Vol 19, Iss 2, p 024006 (2024)
This paper developed a deep learning (DL) model for forecasting tropical cyclone (TC) intensity in the Northwest Pacific. A dataset containing 20 533 synchronized and collocated samples was assembled, which included ERA5 reanalysis data as well as sa
Externí odkaz:
https://doaj.org/article/5eac6deda38f4cd1933c7f449cb3bf88
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Chung-Chieh Wang, Chau-Yi Lee, Ben Jong-Dao Jou, Cynthia P. Celebre, Shirley David, Kazuhisa Tsuboki
Publikováno v:
Weather and Climate Extremes, Vol 37, Iss , Pp 100473- (2022)
The prediction of tropical cyclone (TC) intensity at landfall is crucial for regions vulnerable to high winds and storm surges, but its accuracy has experienced only limited improvement. At high resolution with a grid size of 2.5 km, the Cloud-Resolv
Externí odkaz:
https://doaj.org/article/09fa86a6987545aa8fca85bb7aa065a3
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Water, Vol 15, Iss 15, p 2855 (2023)
Typhoon intensity forecast is an important issue. The objective of this study is to construct a 5-day 12-hourly typhoon intensity forecast model based on the adaptive neuro-fuzzy inference systems (ANFIS) to improve the typhoon intensity forecast in
Externí odkaz:
https://doaj.org/article/afa84b3727a14e7084df899f537fb7b7