Zobrazeno 1 - 10
of 137
pro vyhledávání: '"Inoue, Rei"'
We construct a new solution to the tetrahedron equation by further pursuing the quantum cluster algebra approach in our previous works. The key ingredients include a symmetric butterfly quiver attached to the wiring diagrams for the longest element o
Externí odkaz:
http://arxiv.org/abs/2403.08814
Publikováno v:
J. Phys. A: Math. Theor. 57 (2024) 085202 (33pp)
We develop the quantum cluster algebra approach recently introduced by Sun and Yagi to investigate the tetrahedron equation, a three-dimensional generalization of the Yang-Baxter equation. In the case of square quiver, we devise a new realization of
Externí odkaz:
http://arxiv.org/abs/2310.14529
We construct a new solution to the tetrahedron equation and the three-dimensional (3D) reflection equation by extending the quantum cluster algebra approach by Sun and Yagi concerning the former. We consider the Fock-Goncharov quivers associated with
Externí odkaz:
http://arxiv.org/abs/2310.14493
Autor:
Inoue, Rei, Yamazaki, Takao
Let $W$ be the Weyl group corresponding to a finite dimensional simple Lie algebra $\mathfrak{g}$ of rank $\ell$ and let $m>1$ be an integer. In [I21], by applying cluster mutations, a $W$-action on $\mathcal{Y}_m$ was constructed. Here $\mathcal{Y}_
Externí odkaz:
http://arxiv.org/abs/2207.09867
Autor:
Inoue, Rei
We consider an infinite quiver $Q(\mathfrak{g})$ and a family of periodic quivers $Q_m(\mathfrak{g})$ for a finite dimensional simple Lie algebra $\mathfrak{g}$ and $m \in \mathbb{Z}_{>1}$. The quiver $Q(\mathfrak{g})$ is essentially same as what int
Externí odkaz:
http://arxiv.org/abs/2003.04491
For a symmetrizable Kac-Moody Lie algebra $\mathfrak{g}$, we construct a family of weighted quivers $Q_m(\mathfrak{g})$ ($m \geq 2$) whose cluster modular group $\Gamma_{Q_m(\mathfrak{g})}$ contains the Weyl group $W(\mathfrak{g})$ as a subgroup. We
Externí odkaz:
http://arxiv.org/abs/1902.02716
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider a family of cellular automata $\Phi(n,k)$ associated with infinite reduced elements on the affine symmetric group $\hat S_n$, which is a tropicalization of the rational maps introduced by two of the authors. We study the soliton solutions
Externí odkaz:
http://arxiv.org/abs/1712.08989
We define cluster $R$-matrices as sequences of mutations in triangular grid quivers on a cylinder, and show that the affine geometric $R$-matrix of symmetric power representations for the quantum affine algebra $U_q^\prime(\hat{\mathfrak{sl}}_n)$ can
Externí odkaz:
http://arxiv.org/abs/1607.00722
Autor:
Otsuka, Shinya, Ujiie, Hideki, Kato, Tatsuya, Shiiya, Haruhiko, Fujiwara-Kuroda, Aki, Hida, Yasuhiro, Kaga, Kichizo, Wakasa, Satoru, Inoue, Rei, Iimura, Yasuaki
Publikováno v:
In Transplantation Proceedings May 2021 53(4):1379-1381