Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Inmaculada Gayte"'
Publikováno v:
Mathematics in Engineering. 4:1-25
In this paper we consider an optimal control for an equation that models a crucial step in the tumor development, the angiogenesis. We show the existence of an optimal control, we characterize the optimal control as a solution of the optimality syste
Publikováno v:
Discrete & Continuous Dynamical Systems - S. 13:177-202
In this paper we study an anti-angiogenic therapy model that deactivates the tumor angiogenic factors. The model consists of four parabolic equations and considers the chemotaxis and a logistic law for the endothelial cells and several boundary condi
Publikováno v:
ESAIM: Control, Optimisation and Calculus of Variations. 23:773-790
In this paper we study a control problem for a Kirchhoff-type equation. The method to obtain first order necessary optimality conditions is the Dubovitskii–Milyoutin formalism because the classical arguments do not work. We obtain a characterizatio
Autor:
Juan Casado-Díaz, Inmaculada Gayte
Publikováno v:
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences. 458:2925-2946
The twoscale convergence method has proved to be a very useful tool for dealing with periodic homogenization problems. In the present paper we develop this theory to generalized Besicovitch spaces,...
Publikováno v:
IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4b899219a5f907d30118c0882e7d9a2d
Autor:
Juan Casado-Díaz, Inmaculada Gayte
Publikováno v:
Scopus-Elsevier
We present an extension of Besicovitch spaces, which has its origin in the works of Zhikov et al. and Kozlov and Oleinik. We show that these spaces have a similar behaviour to the Lp spaces, and we give a notion of derivative that allows us to treat
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a01228d2ebfc9d6bec2ae38aa4b08f8c
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036977421&partnerID=MN8TOARS
http://www.scopus.com/inward/record.url?eid=2-s2.0-0036977421&partnerID=MN8TOARS