Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Inkit Padhi"'
Autor:
Matteo Manica, Jannis Born, Joris Cadow, Dimitrios Christofidellis, Ashish Dave, Dean Clarke, Yves Gaetan Nana Teukam, Giorgio Giannone, Samuel C. Hoffman, Matthew Buchan, Vijil Chenthamarakshan, Timothy Donovan, Hsiang Han Hsu, Federico Zipoli, Oliver Schilter, Akihiro Kishimoto, Lisa Hamada, Inkit Padhi, Karl Wehden, Lauren McHugh, Alexy Khrabrov, Payel Das, Seiji Takeda, John R. Smith
Publikováno v:
npj Computational Materials, Vol 9, Iss 1, Pp 1-6 (2023)
Abstract With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of
Externí odkaz:
https://doaj.org/article/d563c21247234f54b23d37c88d05e3d1
Autor:
Pierre Dognin, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young, Brian Belgodere
Publikováno v:
Journal of Artificial Intelligence Research. 73:437-459
Image captioning has recently demonstrated impressive progress largely owing to the introduction of neural network algorithms trained on curated dataset like MS-COCO. Often work in this field is motivated by the promise of deployment of captioning sy
Autor:
Tim Draws, Karthikeyan Natesan Ramamurthy, Ioana Baldini, Amit Dhurandhar, Inkit Padhi, Benjamin Timmermans, Nava Tintarev
Publikováno v:
CHIIR'23: Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, 221-235
STARTPAGE=221;ENDPAGE=235;TITLE=CHIIR'23: Proceedings of the 2023 Conference on Human Information Interaction and Retrieval
CHIIR 2023-Proceedings of the 2023 Conference on Human Information Interaction and Retrieval
STARTPAGE=221;ENDPAGE=235;TITLE=CHIIR'23: Proceedings of the 2023 Conference on Human Information Interaction and Retrieval
CHIIR 2023-Proceedings of the 2023 Conference on Human Information Interaction and Retrieval
One way to help users navigate debated topics online is to apply stance detection in web search. Automatically identifying whether search results are against, neutral, or in favor could facilitate diversification efforts and support interventions tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e236e82bd0c65f035b313d9d2fa968aa
https://doi.org/10.1145/3576840.3578296
https://doi.org/10.1145/3576840.3578296
Autor:
Brian Belgodere, Vijil Chenthamarakshan, Payel Das, Pierre Dognin, Toby Kurien, Igor Melnyk, Youssef Mroueh, Inkit Padhi, Mattia Rigotti, Jarret Ross, Yair Schiff, Richard A. Young
Publikováno v:
Machine Learning and Knowledge Discovery in Databases ISBN: 9783031264214
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::292c730b202c06e0df3997edb8a65397
https://doi.org/10.1007/978-3-031-26422-1_47
https://doi.org/10.1007/978-3-031-26422-1_47
Autor:
Aleksandra Mojsilovic, Cicero Nogueira dos Santos, James L. Hedrick, Jason Crain, Sebastian Gehrmann, Kahini Wadhawan, Flaviu Cipcigan, Inkit Padhi, Hendrik Strobelt, Yi Yan Yang, Pin-Yu Chen, Payel Das, Jeremy P. K. Tan, Vijil Chenthamarakshan, Tom Sercu
Publikováno v:
Nature Biomedical Engineering. 5:613-623
The de novo design of antimicrobial therapeutics involves the exploration of a vast chemical repertoire to find compounds with broad-spectrum potency and low toxicity. Here, we report an efficient computational method for the generation of antimicrob
Predicting the properties of a chemical molecule is of great importance in many applications, including drug discovery and material design. Machine learning-based models promise to enable more accurate and faster molecular property predictions than t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::56f0892dc9c63f4d16a6b1bf453a0622
https://doi.org/10.21203/rs.3.rs-1570270/v1
https://doi.org/10.21203/rs.3.rs-1570270/v1
Autor:
Matteo Manica, Jannis Born, Joris Cadow, Dimitrios Christofidellis, Ashish Dave, Dean Clarke, Yves Gaetan Nana Teukam, Giorgio Giannone, Samuel C. Hoffman, Matthew Buchan, Vijil Chenthamarakshan, Timothy Donovan, Hsiang Han Hsu, Federico Zipoli, Oliver Schilter, Akihiro Kishimoto, Lisa Hamada, Inkit Padhi, Karl Wehden, Lauren McHugh, Alexy Khrabrov, Payel Das, Seiji Takeda, John R. Smith
With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hy
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::145b068669f6e0ef69f5e03844536585
Models based on machine learning can enable accurate and fast molecular property predictions, which is of interest in drug discovery and material design. Various supervised machine learning models have demonstrated promising performance, but the vast
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::1758557ea8414d6c0a76dde711766d45
Publikováno v:
EMNLP (1)
In this work, we present a dual learning approach for unsupervised text to path and path to text transfers in Commonsense Knowledge Bases (KBs). We investigate the impact of weak supervision by creating a weakly supervised dataset and show that even
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6a702ccf88e30ab4c41763da36f36c16
Autor:
Pierre L. Dognin, Vijil Chenthamarakshan, Youssef Mroueh, Payel Das, Inkit Padhi, Ke Bai, Cicero Nogueira dos Santos
Publikováno v:
ACL
Generative feature matching network (GFMN) is an approach for training implicit generative models for images by performing moment matching on features from pre-trained neural networks. In this paper, we present new GFMN formulations that are effectiv