Zobrazeno 1 - 4
of 4
pro vyhledávání: '"Ingrid Membrillo-Solis"'
Autor:
Ingrid Membrillo Solis, Tetiana Orlova, Karolina Bednarska, Piotr Lesiak, Tomasz R. Woliński, Giampaolo D’Alessandro, Jacek Brodzki, Malgosia Kaczmarek
Publikováno v:
Communications Materials, Vol 3, Iss 1, Pp 1-11 (2022)
Topological data analysis is an important framework for quantifying the structural and morphological features of soft materials. Here, structural heterogeneity is introduced as a quantitative measure of non-equilibrium mesoscopic order in soft matter
Externí odkaz:
https://doaj.org/article/7764dfd6b52247ca80586b7f47c394c0
Publikováno v:
European Journal of Mathematics. 7(3):1245-1252
The homotopy types of gauge groups of principal $$\mathrm{SO}(4)$$ SO ( 4 ) -bundles over $$S^{4}$$ S 4 are classified p-locally for every prime p, and partial results are obtained integrally. The method generalizes to deal with any quotient of the f
We analyse the homotopy types of gauge groups for principal $U(n)$-bundles over lens spaces.
14 pages
14 pages
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::daeb6cc71d3f13aacab17697209be74a
http://arxiv.org/abs/1907.02930
http://arxiv.org/abs/1907.02930
Autor:
Ingrid Membrillo-Solis
Let $M_{l,m}$ be the total space of the $S^3$-bundle over $S^4$ classified by the element $l\sigma+m\rho\in{\pi_4(SO(4))}$, $l,m\in\mathbb Z$. In this paper we study the homotopy theory of gauge groups of principal $G$-bundles over manifolds $M_{l,m}
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::68d43c3d510b0d0308fab6a7f8131ab1
http://arxiv.org/abs/1707.07022
http://arxiv.org/abs/1707.07022