Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Indrajit Jana"'
Publikováno v:
Journal of High Energy Physics, Vol 2023, Iss 2, Pp 1-45 (2023)
Abstract Quantum gates built out of braid group elements form the building blocks of topological quantum computation. They have been extensively studied in SU(2) k quantum group theories, a rich source of examples of non-Abelian anyons such as the Is
Externí odkaz:
https://doaj.org/article/a57bdd3aafb94ba68bb5a72617f29ff8
Publikováno v:
Journal of Mathematical Physics. 62:083306
We prove the circular law for a class of non-Hermitian random block band matrices with genuinely sublinear bandwidth. Namely, we show there exists $\tau \in (0,1)$ so that if the bandwidth of the matrix $X$ is at least $n^{1-\tau}$ and the nonzero en
We give an upper bound on the total variation distance between the linear eigenvalue statistic, properly scaled and centred, of a random matrix with a variance profile and the standard Gaussian random variable. The second order Poincar\'e inequality
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::53bb2f419871ead9380dfcd0ae1870c8
http://arxiv.org/abs/1901.09404
http://arxiv.org/abs/1901.09404
Autor:
Indrajit Jana
We show that the fluctuations of the linear eigenvalue statistics of a non-Hermitian random band matrix of increasing bandwidth $b_{n}$ with a continuous variance profile $w_{\nu}(x)$ converges to a $N(0,\sigma_{f}^{2}(\nu))$, where $\nu=\lim_{n\to\i
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::0e338aaa8b3d70188c8a6d911211f6d4
Autor:
Indrajit Jana, Alexander Soshnikov
We consider the limiting spectral distribution of matrices of the form $\frac{1}{2b_{n}+1} (R + X)(R + X)^{*}$, where $X$ is an $n\times n$ band matrix of bandwidth $b_{n}$ and $R$ is a non random band matrix of bandwidth $b_{n}$. We show that the St
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::5724e8d99abe52542b00e4df44904b1d
http://arxiv.org/abs/1610.02153
http://arxiv.org/abs/1610.02153
Publikováno v:
Jana, Indrajit; Saha, Koushik; & Soshnikov, Alexander. (2014). Fluctuations of Linear Eigenvalue Statistics of Random Band Matrices. UC Davis: Department of Mathematics. Retrieved from: http://www.escholarship.org/uc/item/7hm671sk
In this paper, we study the fluctuation of linear eigenvalue statistics of Random Band Matrices defined by $M_{n}=\frac{1}{\sqrt{b_{n}}}W_{n}$, where $W_{n}$ is a $n\times n$ band Hermitian random matrix of bandwidth $b_{n}$, i.e., the diagonal eleme