Zobrazeno 1 - 10
of 16
pro vyhledávání: '"Imolay, András"'
Autor:
Bérczi, Kristóf, Gehér, Boglárka, Imolay, András, Lovász, László, Maga, Balázs, Schwarcz, Tamás
The study of matroid products traces back to the 1970s, when Lov\'asz and Mason studied the existence of various types of matroid products with different strengths. Among these, the tensor product is arguably the most important, which can be consider
Externí odkaz:
http://arxiv.org/abs/2411.02197
Submodular set functions are undoubtedly among the most important building blocks of combinatorial optimization. Somewhat surprisingly, continuous counterparts of such functions have also appeared in an analytic line of research where they found appl
Externí odkaz:
http://arxiv.org/abs/2406.04728
Consider a matroid equipped with a labeling of its ground set to an abelian group. We define the label of a subset of the ground set as the sum of the labels of its elements. We study a collection of problems on finding bases and common bases of matr
Externí odkaz:
http://arxiv.org/abs/2402.16259
We consider a natural generalisation of Tur\'an's forbidden subgraph problem and the Ruzsa-Szemer\'edi problem by studying the maximum number $ex_F(n,G)$ of edge-disjoint copies of a fixed graph $F$ can be placed on an $n$-vertex ground set without f
Externí odkaz:
http://arxiv.org/abs/2110.02367
In this article we investigate a problem in graph theory, which has an equivalent reformulation in extremal set theory similar to the problems researched in "A general 2-part Erd\H{o}s-Ko-Rado theorem" by Gyula O.H. Katona, who proposed our problem a
Externí odkaz:
http://arxiv.org/abs/2104.13505
Let $G$ be the Cartesian product of a regular tree $T$ and a finite connected transitive graph $H$. It is shown in arXiv:2006.06387 that the Free Uniform Spanning Forest ($\mathsf{FSF}$) of this graph may not be connected, but the dependence of this
Externí odkaz:
http://arxiv.org/abs/2011.12904
Autor:
Csikvári, Péter, Imolay, András
Given a graph $G$ with only even degrees let $\varepsilon(G)$ denote the number of Eulerian orientations, and let $h(G)$ denote the number of half graphs, that is, subgraphs $F$ such that $d_F(v)=d_G(v)/2$ for each vertex $v$. Recently, Borb\'enyi an
Externí odkaz:
http://arxiv.org/abs/1905.06678
Publikováno v:
In Discrete Mathematics September 2022 345(9)
Publikováno v:
In Discrete Mathematics July 2022 345(7)
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.