Zobrazeno 1 - 7
of 7
pro vyhledávání: '"Immanuel Stampfli"'
Autor:
Immanuel Stampfli
Publikováno v:
Transformation Groups. 22:525-535
We prove that any two algebraic embeddings ℂ → SLn(ℂ) are the same up to an algebraic automorphism of SLn(ℂ), provided that n is at least 3. Moreover, we prove that two algebraic embeddings ℂ → SL2(ℂ) are the same up to a holomorphic au
Autor:
Jérémy Blanc, Immanuel Stampfli
Publikováno v:
Algebraic Geometry
We study the group of automorphisms of the affine plane preserving some given curve, over any field. The group is proven to be algebraic, except in the case where the curve is a bunch of parallel lines. Moreover, a classification of the groups of pos
Autor:
Immanuel Stampfli
Publikováno v:
International Mathematics Research Notices. 2015:9832-9856
Autor:
Hanspeter Kraft, Immanuel Stampfli
Publikováno v:
Ann. Inst. Fourier
We show that every automorphism of the group $\mathcal{G}_n:= \textrm{Aut}(\mathbb{A}^n)$ of polynomial automorphisms of complex affine $n$-space $\mathbb{A}^n=\mathbb{C}^n$ is inner up to field automorphisms when restricted to the subgroup $T \mathc
Autor:
Immanuel Stampfli
Publikováno v:
J. Algebra
In the literature there are two ways of endowing an affine ind-variety with a topology. One possibility is due to Shafarevich and the other to Kambayashi. In this paper we specify a large class of affine ind-varieties where these two topologies diffe
Autor:
Immanuel Stampfli, Stefan Maubach
Let $\textbf{k}$ be an algebraically closed field. We classify all maximal $\textbf{k}$-subalgebras of any one-dimensional finitely generated $\textbf{k}$-domain. In dimension two, we classify all maximal $\textbf{k}$-subalgebras of $\textbf{k}[t, t^
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::4f522d3524ca49913cce77f4ba5ebfb5
http://arxiv.org/abs/1501.03753
http://arxiv.org/abs/1501.03753
Autor:
Immanuel Stampfli
Publikováno v:
Math. Res. Lett.
Let $\mathcal{G}$ be an ind-group and let $\mathcal{U} \subseteq \mathcal{G}$ be a unipotent ind-subgroup. We prove that an abstract group automorphism $\theta \colon \mathcal{G} \to \mathcal{G}$ maps $\mathcal{U}$ isomorphically onto a unipotent ind
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::98ef6864ee612920817c91327f23b3ef
http://arxiv.org/abs/1209.3427
http://arxiv.org/abs/1209.3427