Zobrazeno 1 - 10
of 17 335
pro vyhledávání: '"Imani AS"'
Federated Learning (FL) is essential for efficient data exchange in Internet of Things (IoT) environments, as it trains Machine Learning (ML) models locally and shares only model updates. However, FL is vulnerable to privacy threats like model invers
Externí odkaz:
http://arxiv.org/abs/2411.01140
Autor:
Tafreshipour, Mahan, Imani, Aaron, Huang, Eric, Almeida, Eduardo, Zimmermann, Thomas, Ahmed, Iftekhar
The adoption of Large Language Models (LLMs) is reshaping software development as developers integrate these LLMs into their applications. In such applications, prompts serve as the primary means of interacting with LLMs. Despite the widespread use o
Externí odkaz:
http://arxiv.org/abs/2412.17298
Referring multi-object tracking (RMOT) is an emerging cross-modal task that aims to localize an arbitrary number of targets based on a language expression and continuously track them in a video. This intricate task involves reasoning on multi-modal d
Externí odkaz:
http://arxiv.org/abs/2412.12561
Autor:
Najafi, Deniz, Barkam, Hamza Errahmouni, Morsali, Mehrdad, Jeong, SungHeon, Das, Tamoghno, Roohi, Arman, Nikdast, Mahdi, Imani, Mohsen, Angizi, Shaahin
Neuro-symbolic Artificial Intelligence (AI) models, blending neural networks with symbolic AI, have facilitated transparent reasoning and context understanding without the need for explicit rule-based programming. However, implementing such models in
Externí odkaz:
http://arxiv.org/abs/2412.10187
Autor:
Abbasi, Ali, Imani, Shima, An, Chenyang, Mahalingam, Gayathri, Shrivastava, Harsh, Diesendruck, Maurice, Pirsiavash, Hamed, Sharma, Pramod, Kolouri, Soheil
With the rapid scaling of neural networks, data storage and communication demands have intensified. Dataset distillation has emerged as a promising solution, condensing information from extensive datasets into a compact set of synthetic samples by so
Externí odkaz:
http://arxiv.org/abs/2412.04668
Autor:
Jeong, Sungheon, Chen, Hanning, Yun, Sanggeon, Cho, Suhyeon, Huang, Wenjun, Liu, Xiangjian, Imani, Mohsen
This paper introduces a powerful encoder that transfers CLIP`s capabilities to event-based data, enhancing its utility and expanding its applicability across diverse domains. While large-scale datasets have significantly advanced image-based models,
Externí odkaz:
http://arxiv.org/abs/2412.03093
Autor:
Jeong, SungHeon, Barkam, Hamza Errahmouni, Yun, Sanggeon, Kim, Yeseong, Angizi, Shaahin, Imani, Mohsen
Hyperdimensional computing (HDC) enables efficient data encoding and processing in high-dimensional space, benefiting machine learning and data analysis. However, underutilization of these spaces can lead to overfitting and reduced model reliability,
Externí odkaz:
http://arxiv.org/abs/2411.14612
Autor:
Yun, Sanggeon, Masukawa, Ryozo, Chung, William Youngwoo, Na, Minhyoung, Bastian, Nathaniel, Imani, Mohsen
The increasing demand for robust security solutions across various industries has made Video Anomaly Detection (VAD) a critical task in applications such as intelligent surveillance, evidence investigation, and violence detection. Traditional approac
Externí odkaz:
http://arxiv.org/abs/2411.09072
Autor:
MicroBooNE collaboration, Abratenko, P., Alterkait, O., Aldana, D. Andrade, Arellano, L., Asaadi, J., Ashkenazi, A., Balasubramanian, S., Baller, B., Barnard, A., Barr, G., Barrow, D., Barrow, J., Basque, V., Bateman, J., Rodrigues, O. Benevides, Berkman, S., Bhanderi, A., Bhat, A., Bhattacharya, M., Bishai, M., Blake, A., Bogart, B., Bolton, T., Brunetti, M. B., Camilleri, L., Cao, Y., Caratelli, D., Cavanna, F., Cerati, G., Chappell, A., Chen, Y., Conrad, J. M., Convery, M., Cooper-Troendle, L., Crespo-Anadon, J. I., Cross, R., Del Tutto, M., Dennis, S. R., Detje, P., Diurba, R., Djurcic, Z., Duffy, K., Dytman, S., Eberly, B., Englezos, P., Ereditato, A., Evans, J. J., Fang, C., Fleming, B. T., Foreman, W., Franco, D., Furmanski, A. P., Gao, F., Garcia-Gamez, D., Gardiner, S., Ge, G., Gollapinni, S., Gramellini, E., Green, P., Greenlee, H., Gu, L., Gu, W., Guenette, R., Guzowski, P., Hagaman, L., Handley, M. D., Hen, O., Hilgenberg, C., Horton-Smith, G. A., Imani, Z., Irwin, B., Ismail, M. S., James, C., Ji, X., Jo, J. H., Johnson, R. A., Jwa, Y. J., Kalra, D., Karagiorgi, G., Ketchum, W., Kirby, M., Kobilarcik, T., Lane, N., Li, J. -Y., Li, Y., Lin, K., Littlejohn, B. R., Liu, L., Louis, W. C., Luo, X., Mahmud, T., Mariani, C., Marsden, D., Marshall, J., Martinez, N., Caicedo, D. A. Martinez, Martynenko, S., Mastbaum, A., Mawby, I., McConkey, N., Meddage, V., Mellet, L., Mendez, J., Micallef, J., Miller, K., Mistry, K., Mohayai, T., Mogan, A., Mooney, M., Moor, A. F., Moore, C. D., Lepin, L. Mora, Moudgalya, M. M., Babu, S. Mulleria, Naples, D., Navrer-Agasson, A., Nayak, N., Nebot-Guinot, M., Nguyen, C., Nowak, J., Oza, N., Palamara, O., Pallat, N., Paolone, V., Papadopoulou, A., Papavassiliou, V., Parkinson, H., Pate, S. F., Patel, N., Pavlovic, Z., Piasetzky, E., Pletcher, K., Pophale, I., Qian, X., Raaf, J. L., Radeka, V., Rafique, A., Reggiani-Guzzo, M., Ren, L., Rochester, L., Rondon, J. Rodriguez, Rosenberg, M., Ross-Lonergan, M., Safa, I., Schmitz, D. W., Schukraft, A., Seligman, W., Shaevitz, M. H., Sharankova, R., Shi, J., Snider, E. L., Soderberg, M., Soldner-Rembold, S., Spitz, J., Stancari, M., John, J. St., Strauss, T., Szelc, A. M., Taniuchi, N., Terao, K., Thorpe, C., Torbunov, D., Totani, D., Toups, M., Trettin, A., Tsai, Y. -T., Tyler, J., Uchida, M. A., Usher, T., Viren, B., Wang, J., Weber, M., Wei, H., White, A. J., Wolbers, S., Wongjirad, T., Wospakrik, M., Wresilo, K., Wu, W., Yandel, E., Yang, T., Yates, L. E., Yu, H. W., Zeller, G. P., Zennamo, J., Zhang, C.
Neutrino-nucleus cross section measurements are needed to improve interaction modeling to meet the precision needs of neutrino experiments in efforts to measure oscillation parameters and search for physics beyond the Standard Model. We review the di
Externí odkaz:
http://arxiv.org/abs/2411.03280
Workplace accidents due to personal protective equipment (PPE) non-compliance raise serious safety concerns and lead to legal liabilities, financial penalties, and reputational damage. While object detection models have shown the capability to addres
Externí odkaz:
http://arxiv.org/abs/2408.07146