Zobrazeno 1 - 10
of 277
pro vyhledávání: '"Imaginary number"'
Autor:
Wolf-Dieter Richter
Publikováno v:
Stats, Vol 6, Iss 4, Pp 1072-1081 (2023)
Based upon the vector representation of complex numbers and the vector exponential function, we introduce the vector representation of characteristic functions and consider some of its elementary properties such as its polar representation and a vect
Externí odkaz:
https://doaj.org/article/ef2cb2fc96e84c7a913fce6b5599ffb1
Autor:
Ottaviani, Osvaldo, author
Publikováno v:
Oxford Studies in Early Modern Philosophy, Volume X, 2021, ill.
Externí odkaz:
https://doi.org/10.1093/oso/9780192897442.003.0005
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Annamalai, Chinnaraji
The imaginary number √(-1) plays a vital in complex number system. This paper presents the imaginary number √(-1) as solutions for algebraic equations which are discussed in it.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::32cd333206c7c2af62c5cda3865d8fa7
Autor:
Chinnaraji Annamalai
√(-1) plays a vital in complex numbers. Also, there are no complex numbers without i=√(-1). This paper discusses the complex numbers and its usage in the number system and also provides a lemma.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a6120b7c1ea71f608e2ca3dcd240d681
https://doi.org/10.31219/osf.io/p39ac
https://doi.org/10.31219/osf.io/p39ac
Autor:
Chinnaraji Annamalai
sqrt(-1) is an imaginary number in the complex number system. The paper presents a theorem using the imaginary number sqrt(-1)..
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::427f026eed70b44566a52192b5b44649
Autor:
Abdulaziz Deajim
Publikováno v:
Journal of Mathematics. 2021:1-11
Let H λ 4 be the Hecke group x , y : x 2 = y 4 = 1 and, for a square-free positive integer n , consider the subset ℚ ∗ − n = a + − n / c | a , b = a 2 + n / c ∈ ℤ , c ∈ 2 ℤ of the quadratic imaginary number field ℚ − n . Followin
Autor:
Giorgio Capezzali
Publikováno v:
Physics Essays. 34:44-50
In this article, linear transformations of coordinates to a superluminal inertial reference frame are presented. Even if there is no need to use imaginary numbers to maintain c invariant, these functions are just intended as a mathematical curiosity
Autor:
Espen Gaarder Haug, Pankaj Mani
Publikováno v:
741-?
Advances in Pure Mathematics
Advances in Pure Mathematics
In this paper, we point out an interesting asymmetry in the rules of fundamental mathematics between positive and negative numbers. Further, we show an alternative numerical system identical to today’s system, but where positive numbers dominate ov