Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Ilya Prokin"'
Publikováno v:
PLoS Computational Biology, Vol 19, Iss 1, p e1010792 (2023)
Modern well-performing approaches to neural decoding are based on machine learning models such as decision tree ensembles and deep neural networks. The wide range of algorithms that can be utilized to learn from neural spike trains, which are essenti
Externí odkaz:
https://doaj.org/article/12da3dfb10184081bec0d7517920f503
Autor:
Hao Xu, Sylvie Perez, Amandine Cornil, Bérangère Detraux, Ilya Prokin, Yihui Cui, Bertrand Degos, Hugues Berry, Alban de Kerchove d’Exaerde, Laurent Venance
Publikováno v:
Nature Communications, Vol 9, Iss 1, Pp 1-18 (2018)
Dopamine tightly regulates plasticity at corticostriatal synapses. Here, the authors report that endocannabinoid dependent LTP induced with few spikes in the striatum is impaired in a rodent model of Parkinson’s disease, requires dopamine through p
Externí odkaz:
https://doaj.org/article/b584366768e1403282f7684c1c3a189a
Publikováno v:
eLife, Vol 5 (2016)
Synaptic plasticity is a cardinal cellular mechanism for learning and memory. The endocannabinoid (eCB) system has emerged as a pivotal pathway for synaptic plasticity because of its widely characterized ability to depress synaptic transmission on sh
Externí odkaz:
https://doaj.org/article/7a6a06ff1f03416ca42d5837422f13f5
Autor:
Hugues Berry, Sylvie Perez, Yulia Dembitskaya, Giuseppe Gangarossa, Ilya Prokin, Laurent Venance
Publikováno v:
Cerebral Cortex
Cerebral Cortex, Oxford University Press (OUP), 2019, bhz081, pp.1-18. ⟨10.1093/cercor/bhz081⟩
Cerebral Cortex, 2019, bhz081, pp.1-18. ⟨10.1093/cercor/bhz081⟩
Cerebral Cortex, Oxford University Press (OUP), 2019, bhz081, pp.1-18. ⟨10.1093/cercor/bhz081⟩
Cerebral Cortex, 2019, bhz081, pp.1-18. ⟨10.1093/cercor/bhz081⟩
The dorsal striatum exhibits bidirectional corticostriatal synaptic plasticity, NMDAR- and endocannabinoids-(eCB)-mediated, necessary for the encoding of procedural learning. Therefore, characterizing factors controlling corticostriatal plasticity is
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::50fa04b439cb1a2fa1fef8b3673753cd
https://hal.inria.fr/hal-02076121/document
https://hal.inria.fr/hal-02076121/document
Autor:
Yihui Cui, Bérangère Detraux, Sylvie Perez, Laurent Venance, Alban de Kerchove d'Exaerde, Bertrand Degos, Amandine Cornil, Hao Xu, Hugues Berry, Ilya Prokin
Publikováno v:
Nature Communications
Nature Communications, 2018, 9, pp.4118. ⟨10.1038/s41467-018-06409-5⟩
Nature Communications, Nature Publishing Group, 2018, 9 (1), ⟨10.1038/s41467-018-06409-5⟩
Nature Communications, Vol 9, Iss 1, Pp 1-18 (2018)
Nature Communications, Nature Publishing Group, 2018, 9, pp.4118. ⟨10.1038/s41467-018-06409-5⟩
Nature communications, 9 (1
Nature Communications, 2018, 9, pp.4118. ⟨10.1038/s41467-018-06409-5⟩
Nature Communications, Nature Publishing Group, 2018, 9 (1), ⟨10.1038/s41467-018-06409-5⟩
Nature Communications, Vol 9, Iss 1, Pp 1-18 (2018)
Nature Communications, Nature Publishing Group, 2018, 9, pp.4118. ⟨10.1038/s41467-018-06409-5⟩
Nature communications, 9 (1
Dopamine modulates striatal synaptic plasticity, a key substrate for action selection and procedural learning. Thus, characterizing the repertoire of activity-dependent plasticity in striatum and its dependence on dopamine is of crucial importance. W
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::59b1ff75a70b64377ebf7855c91badb6
https://inria.hal.science/hal-01865929
https://inria.hal.science/hal-01865929
Publikováno v:
Scientific Reports
Scientific Reports, Nature Publishing Group, 2018, 8 (1), pp.8139:1-15. ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Nature Publishing Group, In press
Scientific Reports, 2018, 8 (1), pp.8139:1-15. ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Nature Publishing Group, 2018, 8 (1), ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Vol 8, Iss 1, Pp 1-15 (2018)
Scientific Reports, Nature Publishing Group, 2018, 8 (1), pp.8139:1-15. ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Nature Publishing Group, In press
Scientific Reports, 2018, 8 (1), pp.8139:1-15. ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Nature Publishing Group, 2018, 8 (1), ⟨10.1038/s41598-018-26436-y⟩
Scientific Reports, Vol 8, Iss 1, Pp 1-15 (2018)
In Hebbian plasticity, neural circuits adjust their synaptic weights depending on patterned firing of action potential on either side of the synapse. Spike-timing-dependent plasticity (STDP) is an experimental implementation of Hebb’s postulate tha
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f635d736ae8bf022b3e2508f509370e0
https://hal.inria.fr/hal-01788826
https://hal.inria.fr/hal-01788826
Modern well-performing approaches to neural decoding are based on machine learning models such as decision tree ensembles and deep neural networks. The wide range of algorithms that can be utilized to learn from neural spike trains, which are essenti
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::ae53af71c4992d7f2b6d534d9803af79
Publikováno v:
International Journal of Bifurcation and Chaos. 25:1540005
The work investigates the influence of spike-timing dependent plasticity (STDP) mechanisms on the dynamics of two synaptically coupled neurons driven by additive external noise. In this setting, the noise signal models synaptic inputs that the pair r