Zobrazeno 1 - 10
of 36
pro vyhledávání: '"Ils Reusen"'
Autor:
Liesbeth De Keukelaere, Robrecht Moelans, Els Knaeps, Sindy Sterckx, Ils Reusen, Dominique De Munck, Stefan G.H. Simis, Adriana Maria Constantinescu, Albert Scrieciu, Georgios Katsouras, Wim Mertens, Peter D. Hunter, Evangelos Spyrakos, Andrew Tyler
Publikováno v:
Remote Sensing, Vol 15, Iss 5, p 1345 (2023)
Using airborne drones to monitor water quality in inland, transitional or coastal surface waters is an emerging research field. Airborne drones can fly under clouds at preferred times, capturing data at cm resolution, filling a significant gap betwee
Externí odkaz:
https://doaj.org/article/5695fcab89b44abea11066c80aee627e
Autor:
Rui Xie, Roshanak Darvishzadeh, Andrew K. Skidmore, Marco Heurich, Stefanie Holzwarth, Tawanda W. Gara, Ils Reusen
Publikováno v:
International Journal of Applied Earth Observations and Geoinformation, Vol 95, Iss , Pp 102242- (2021)
Machine learning algorithms, in particular, kernel-based machine learning methods such as Gaussian processes regression (GPR) have shown to be promising alternatives to traditional empirical methods for retrieving vegetation parameters from remotely
Externí odkaz:
https://doaj.org/article/a37eb84a9e5845209f3d7dab26dbea5f
Publikováno v:
Water, Vol 14, Iss 7, p 1021 (2022)
The increase of human interventions and developments are modifying the land use/land cover (LULC) of the global landscape, thus severely affecting the water quality of rivers and lakes. Appropriate management and effective policy developments are req
Externí odkaz:
https://doaj.org/article/9f5d318e77f64c64bf4856aeffcfd34c
Autor:
Ghada Y.H. El Serafy, Blake A. Schaeffer, Merrie-Beth Neely, Anna Spinosa, Daniel Odermatt, Kathleen C. Weathers, Theo Baracchini, Damien Bouffard, Laurence Carvalho, Robyn N. Conmy, Liesbeth De Keukelaere, Peter D. Hunter, Cédric Jamet, Klaus D. Joehnk, John M. Johnston, Anders Knudby, Camille Minaudo, Nima Pahlevan, Ils Reusen, Kevin C. Rose, John Schalles, Maria Tzortziou
Publikováno v:
Remote Sensing, Vol 13, Iss 15, p 2899 (2021)
Water quality measures for inland and coastal waters are available as discrete samples from professional and volunteer water quality monitoring programs and higher-frequency, near-continuous data from automated in situ sensors. Water quality paramete
Externí odkaz:
https://doaj.org/article/abb7769f3ad2437a823c2bc4ac943811
Autor:
Subhajit Bandopadhyay, Anshu Rastogi, Uwe Rascher, Patrick Rademske, Anke Schickling, Sergio Cogliati, Tommaso Julitta, Alasdair Mac Arthur, Andreas Hueni, Enrico Tomelleri, Marco Celesti, Andreas Burkart, Marcin Stróżecki, Karolina Sakowska, Maciej Gąbka, Stanisław Rosadziński, Mariusz Sojka, Marian-Daniel Iordache, Ils Reusen, Christiaan Van Der Tol, Alexander Damm, Dirk Schuettemeyer, Radosław Juszczak
Publikováno v:
Remote Sensing, Vol 11, Iss 14, p 1691 (2019)
Hyperspectral remote sensing (RS) provides unique possibilities to monitor peatland vegetation traits and their temporal dynamics at a fine spatial scale. Peatlands provide a vital contribution to ecosystem services by their massive carbon storage an
Externí odkaz:
https://doaj.org/article/43ac157d315b4b37b6d9a19da57ac1a8
Publikováno v:
Remote Sensing, Vol 10, Iss 6, p 947 (2018)
A key parameter for atmospheric correction (AC) is Aerosol Optical Depth (AOD), which is often estimated from sensor radiance (Lrs,t(λ)). Noise, the dependency on surface type, viewing and illumination geometry cause uncertainty in AOD inference. We
Externí odkaz:
https://doaj.org/article/cfc97524d773474fb90b24a4cd91e4d8
Autor:
Ils Reusen, Jens Nieke
Publikováno v:
Sensors, Vol 7, Iss 8, Pp 1545-1558 (2007)
User-driven requirements for remote sensing data are difficult to define,especially details on geometric, spectral and radiometric parameters. Even more difficult isa decent assessment of the required degrees of processing and corresponding data qual
Externí odkaz:
https://doaj.org/article/62576cd233d449f59b7fb342f40064f3
Publikováno v:
Water; Volume 14; Issue 7; Pages: 1021
The increase of human interventions and developments are modifying the land use/land cover (LULC) of the global landscape, thus severely affecting the water quality of rivers and lakes. Appropriate management and effective policy developments are req
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc53fb3a59fa542a6f60fdfa644c322d
https://hdl.handle.net/20.500.14017/774a759f-f9bd-4a34-9bab-cd2b3d9fceb7
https://hdl.handle.net/20.500.14017/774a759f-f9bd-4a34-9bab-cd2b3d9fceb7
Autor:
Roshanak Darvishzadeh, Marco Heurich, Andrew K. Skidmore, Stefanie Holzwarth, Rui Xie, Ils Reusen, Tawanda W. Gara
Publikováno v:
International Journal of Applied Earth Observation and Geoinformation (JAG), 95:102242, 1-13. Elsevier
Machine learning algorithms, in particular, kernel-based machine learning methods such as Gaussian processes regression (GPR) have shown to be promising alternatives to traditional empirical methods for retrieving vegetation parameters from remotely
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::bc0bdca6970b973780438d22f116d3c1
https://research.utwente.nl/en/publications/499d9b70-1e1d-492e-aa80-513d107c5f0e
https://research.utwente.nl/en/publications/499d9b70-1e1d-492e-aa80-513d107c5f0e
Publikováno v:
Remote sensing of environment, 204, 472-484. Elsevier
Atmospheric correction (AC) is important in pre-processing of airborne hyperspectral imagery. AC requires knowledge on the atmospheric state expressed by atmospheric condition parameters. Their values are affected by uncertainties that propagate to t