Zobrazeno 1 - 10
of 96
pro vyhledávání: '"Ilkka Holopainen"'
We prove existence results for entire graphical translators of the mean curvature flow (the so-called bowl solitons) on Cartan-Hadamard manifolds. We show that the asymptotic behaviour of entire solitons depends heavily on the curvature of the manifo
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::256bc243d19707690af2f67ee59c81f1
http://hdl.handle.net/10138/356706
http://hdl.handle.net/10138/356706
Publikováno v:
Journal of Dynamics and Differential Equations.
We study the fourth order Schr\"odinger equation with mixed dispersion on an $N$-dimensional Cartan-Hadamard manifold. At first, we focus on the case of the hyperbolic space. Using the fact that there exists a Fourier transform on this space, we prov
Assuming that there exists a translating soliton $u_\infty$ with speed $C$ in a domain $\Omega$ and with prescribed contact angle on $\partial\Omega$, we prove that a graphical solution to the mean curvature flow with the same prescribed contact angl
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2a871ea2ca6e364ee0593ca3ea9634be
http://hdl.handle.net/10138/341934
http://hdl.handle.net/10138/341934
Publikováno v:
Mathematische Zeitschrift
We study the asymptotic Dirichlet problem for Killing graphs with prescribed mean curvature H in warped product manifolds M× ϱR. In the first part of the paper, we prove the existence of Killing graphs with prescribed boundary on geodesic balls und
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f5f4e9cb3a657e631dc16c20f9f226db
http://hdl.handle.net/10138/315035
http://hdl.handle.net/10138/315035
Autor:
Seppo Rickman, Ilkka Holopainen
Publikováno v:
The Journal of Fourier Analysis and Applications
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::10b82b72b202f0e9ffe586e3ff910b80
https://doi.org/10.1201/9780429332838-14
https://doi.org/10.1201/9780429332838-14
We prove that every entire solution of the minimal graph equation that is bounded from below and has at most linear growth must be constant on a complete Riemannian manifold $M$ with only one end if $M$ has asymptotically non-negative sectional curva
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::63c664be3f8f10f5037ee3b428ed5db0
http://hdl.handle.net/10138/312016
http://hdl.handle.net/10138/312016
Publikováno v:
Potential Analysis
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
Potential Analysis, Springer Verlag, 2017, 47 (4), pp.485-501. ⟨10.1007/s11118-017-9624-z⟩
We study the Dirichlet problem at infinity on a Cartan-Hadamard manifold M of dimension n 2 for a large class of operators containing, in particular, the p-Laplacian and the minimal graph operator. We extend several existence results obtained for the
We prove the existence of solutions to the asymptotic Plateau problem for hypersurfaces of prescribed mean curvature in Cartan-Hadamard manifolds $N$. More precisely, given a suitable subset $L$ of the asymptotic boundary of $N$ and a suitable functi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7a4939bec40f560df3f1d902c8673dd0
We study the asymptotic Dirichlet and Plateau problems on Cartan-Hadamard manifolds satisfying the so-called Strict Convexity (abbr. SC) condition. The main part of the paper consists in studying the SC condition on a manifold whose sectional curvatu
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::174282aac23f4fc8a2d6471a33844b29
http://hdl.handle.net/10138/298273
http://hdl.handle.net/10138/298273
Autor:
Ilkka Holopainen
Publikováno v:
Advances in Calculus of Variations. 9:163-185
We construct, by modifying Borbély's example, a 3-dimensional Cartan–Hadamard manifold M, with sectional curvatures at most -1, such that the asymptotic Dirichlet problem for the p-Laplacian is not solvable for any p > 1.