Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Ilievski, Ilija"'
Human annotation is a time-consuming task that requires a significant amount of effort. To address this issue, interactive data annotation utilizes an annotation model to provide suggestions for humans to approve or correct. However, annotation model
Externí odkaz:
http://arxiv.org/abs/2405.11912
Publikováno v:
Neural Networks, Volume 176, 2024, 106335
Providing a model that achieves a strong predictive performance and is simultaneously interpretable by humans is one of the most difficult challenges in machine learning research due to the conflicting nature of these two objectives. To address this
Externí odkaz:
http://arxiv.org/abs/2307.05639
Publikováno v:
In Environmental Modelling and Software September 2024 180
Publikováno v:
In Neural Networks August 2024 176
Finance is a particularly challenging application area for deep learning models due to low noise-to-signal ratio, non-stationarity, and partial observability. Non-deliverable-forwards (NDF), a derivatives contract used in foreign exchange (FX) tradin
Externí odkaz:
http://arxiv.org/abs/1909.10801
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Ilievski, Ilija, Feng, Jiashi
Visual question answering as recently proposed multimodal learning task has enjoyed wide attention from the deep learning community. Lately, the focus was on developing new representation fusion methods and attention mechanisms to achieve superior pe
Externí odkaz:
http://arxiv.org/abs/1708.00584
Autor:
Ilievski, Ilija, Feng, Jiashi
Recently, several optimization methods have been successfully applied to the hyperparameter optimization of deep neural networks (DNNs). The methods work by modeling the joint distribution of hyperparameter values and corresponding error. Those metho
Externí odkaz:
http://arxiv.org/abs/1608.00218
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates
Automatically searching for optimal hyperparameter configurations is of crucial importance for applying deep learning algorithms in practice. Recently, Bayesian optimization has been proposed for optimizing hyperparameters of various machine learning
Externí odkaz:
http://arxiv.org/abs/1607.08316
Visual Question and Answering (VQA) problems are attracting increasing interest from multiple research disciplines. Solving VQA problems requires techniques from both computer vision for understanding the visual contents of a presented image or video
Externí odkaz:
http://arxiv.org/abs/1604.01485