Zobrazeno 1 - 6
of 6
pro vyhledávání: '"Ilaria Zappatore"'
This paper deals with the polynomial linear system solving with errors (PLSwE) problem. Specifically, we focus on the evaluation-interpolation technique for solving polynomial linear systems and we assume that errors can occur in the evaluation step.
Externí odkaz:
http://arxiv.org/abs/2102.04182
Publikováno v:
Journal of Symbolic Computation
Journal of Symbolic Computation, 2023, 116, pp.345-364. ⟨10.1016/j.jsc.2022.10.007⟩
Journal of Symbolic Computation, 2023, 116, pp.345-364. ⟨10.1016/j.jsc.2022.10.007⟩
International audience; In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory p
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f910f3b12f92f8f8b72edaf2a2255700
https://hal.science/hal-03620179
https://hal.science/hal-03620179
Publikováno v:
Advances in Mathematics of Communications
Round functions used as building blocks for iterated block ciphers, both in the case of Substitution-Permutation Networks and Feistel Networks, are often obtained as the composition of different layers which provide confusion and diffusion, and key a
Publikováno v:
ISSAC 2021-46th International Symposium on Symbolic and Algebraic Computation
ISSAC 2021-46th International Symposium on Symbolic and Algebraic Computation, Jul 2021, Saint Petersburg, Russia. pp.171-178, ⟨10.1145/3452143.3465548⟩
ISSAC
International Symposium on Symbolic and Algebraic Computation (ISSAC 2021)
International Symposium on Symbolic and Algebraic Computation (ISSAC 2021), Jul 2021, Saint Petersburg, Russia. pp.171-178, ⟨10.1145/3452143.3465548⟩
ISSAC 2021-46th International Symposium on Symbolic and Algebraic Computation, Jul 2021, Saint Petersburg, Russia. pp.171-178, ⟨10.1145/3452143.3465548⟩
ISSAC
International Symposium on Symbolic and Algebraic Computation (ISSAC 2021)
International Symposium on Symbolic and Algebraic Computation (ISSAC 2021), Jul 2021, Saint Petersburg, Russia. pp.171-178, ⟨10.1145/3452143.3465548⟩
This paper deals with the polynomial linear system solving with errors (PLSwE) problem. Specifically, we focus on the evaluation-interpolation technique for solving polynomial linear systems and we assume that errors can occur in the evaluation step.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8bf2ccd372db58503ed553789dcf890a
Publikováno v:
45th International Symposium on Symbolic and Algebraic Computation (ISSAC)
45th International Symposium on Symbolic and Algebraic Computation (ISSAC), Jul 2020, Kalamata, Greece. pp.226-233, ⟨10.1145/3373207.3404051⟩
ISSAC
45th International Symposium on Symbolic and Algebraic Computation (ISSAC), Jul 2020, Kalamata, Greece. pp.226-233, ⟨10.1145/3373207.3404051⟩
ISSAC
International audience; This paper focuses on the problem of reconstructing a vector of rational functions given some evaluations, or more generally given their remainders modulo different polynomials. The special case of rational functions sharing t
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f33c963c03d7e0d22f1337cfcb554df1
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02486922
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02486922
Publikováno v:
1st International Symposium on Information Theory
ISIT: International Symposium on Information Theory
ISIT: International Symposium on Information Theory, Jul 2019, Paris, France
ISIT
ISIT: International Symposium on Information Theory
ISIT: International Symposium on Information Theory, Jul 2019, Paris, France
ISIT
In this paper we present a new algorithm for Polynomial Linear System Solving (via evaluation/interpolation) with errors. In this scenario, errors can occur in the black box evaluation step. We improve the bound on the number of errors that we can co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a5657eb3c25bf922bcafb488e5b7778c
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127793
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02127793