Zobrazeno 1 - 10
of 33
pro vyhledávání: '"Igor Zelenko"'
Autor:
Igor Zelenko
Publikováno v:
Symmetry, Integrability and Geometry: Methods and Applications, Vol 5, p 094 (2009)
We present Tanaka's prolongation procedure for filtered structures on manifolds discovered in [Tanaka N., J. Math. Kyoto. Univ. 10 (1970), 1-82] in a spirit of Singer-Sternberg's description of the prolongation of usual G-structures [Singer I.M., Ste
Externí odkaz:
https://doaj.org/article/72e768ebf35748aaa92790a986e7704c
Autor:
Igor Zelenko, Curtis Porter
Publikováno v:
Journal für die reine und angewandte Mathematik (Crelles Journal). 2021:195-250
An absolute parallelism for $2$-nondegenerate CR manifolds $M$ of hypersurface type was recently constructed independently by Isaev-Zaitsev, Medori-Spiro, and Pocchiola in the minimal possible dimension ($\dim M=5$), and for $\dim M=7$ in certain cas
Publikováno v:
Linear Algebra and its Applications. 610:488-505
Typically, a linear projection of the Grassmannian in its Plucker embedding is generically injective, unless the image of the Grassmannian is a linear space. A notable exception are self-adjoint linear projections, which have even degree. We consider
Autor:
David Sykes, Igor Zelenko
Publikováno v:
Linear Algebra and its Applications. 590:32-61
Motivated by a problem in local differential geometry of Cauchy--Riemann (CR) structures of hypersurface type, we find a canonical form for pairs consisting of a nondegenerate Hermitian form and a self-adjoint antilinear operator, or, equivalently, c
Autor:
David Sykes, Igor Zelenko
We prove that for every $n\geq 3$ the sharp upper bound for the dimension of the symmetry groups of homogeneous, 2-nondegenerate, $(2n+1)$-dimensional CR manifolds of hypersurface type with a $1$-dimensional Levi kernel is equal to $n^2+7$, and simul
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8cd75fb224deca6dec11c6fd45e2096f
http://arxiv.org/abs/2102.08599
http://arxiv.org/abs/2102.08599
Publikováno v:
Geometriae Dedicata
Geometriae Dedicata, Springer Verlag, 2021, 213 (1), pp.295-314. ⟨10.1007/s10711-020-00581-z⟩
HAL
Geometriae Dedicata, 2021, 213 (1), pp.295-314. ⟨10.1007/s10711-020-00581-z⟩
Geometriae Dedicata, Springer Verlag, 2021, 213 (1), pp.295-314. ⟨10.1007/s10711-020-00581-z⟩
HAL
Geometriae Dedicata, 2021, 213 (1), pp.295-314. ⟨10.1007/s10711-020-00581-z⟩
H. Weyl in 1921 demonstrated that for a connected manifold of dimension greater than $1$, if two Riemannian metrics are conformal and have the same geodesics up to a reparametrization, then one metric is a constant scaling of the other one. In the pr
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::02360ae7dbcdd85bbde5d5d42764aa27
Publikováno v:
Canadian Mathematical Bulletin. 60:747-761
We study linear projections on Pluecker space whose restriction to the Grassmannian is a non-trivial branched cover. When an automorphism of the Grassmannian preserves the fibers, we show that the Grassmannian is necessarily of m-dimensional linear s
Publikováno v:
IFAC-PapersOnLine. 50:500-505
The object of this paper is to study the uniqueness of solutions of inverse control problems in the case where the dynamics is given by a control-affine system without drift and the costs are length and energy functionals.
Publikováno v:
Canadian Mathematical Bulletin. 60:309-318
We previously obtained a congruence modulo four for the number of real solutions to many Schubert problems on a square Grassmannian given by osculating flags. Here we consider Schubert problems given by more general isotropic flags, and prove this co
Publikováno v:
Geometriae Dedicata
Geometriae Dedicata, Springer Verlag, 2019, 203 (1), pp.279-319. ⟨10.1007/s10711-019-00437-1⟩
Geometriae Dedicata, Springer Verlag, 2019, 203 (1), pp.279-319. ⟨10.1007/s10711-019-00437-1⟩
International audience; Consider a smooth manifold $M$ equipped with a bracket generating distribution $D$. Two sub-Riemannian metrics on $(M,D)$ are said to be projectively (resp. affinely) equivalent if they have the same geodesics up to reparamete
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::88a6f14a2129528431020d98b1393b6b