Zobrazeno 1 - 10
of 10
pro vyhledávání: '"Igor, Vidić"'
Autor:
Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Haydee Ojeda-Fournier, Tone F. Bathen, Agnes Østlie, Neil P. Jerome, Michael Hahn, Grace S. Ahn, Boya Abudu, Joshua Kuperman, Somaye Zare, Anne M. Wallace, Tyler M. Seibert, Igor Vidić, Christopher C. Conlin, Ana E. Rodríguez-Soto, Maren M. Sjaastad Andreassen
Purpose:Diffusion-weighted MRI (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between predefined benign and malignant breast lesions. However, how well DW-MRI discriminates cancer from all other breast tissue voxel
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6dd97cd359bad37ed71a1d5063c0cc74
https://doi.org/10.1158/1078-0432.c.6530007
https://doi.org/10.1158/1078-0432.c.6530007
Autor:
Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Haydee Ojeda-Fournier, Tone F. Bathen, Agnes Østlie, Neil P. Jerome, Michael Hahn, Grace S. Ahn, Boya Abudu, Joshua Kuperman, Somaye Zare, Anne M. Wallace, Tyler M. Seibert, Igor Vidić, Christopher C. Conlin, Ana E. Rodríguez-Soto, Maren M. Sjaastad Andreassen
Mean (95% CI) for all performance measures the U.S. dataset (Supplementary Table S1) and European dataset (Supplementary Table S2). Median (interquartile range) for average signal of the cancer and control regions of interests (ROIs) for both dataset
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::127e5effcc0b5a243c4b72a5ced72010
https://doi.org/10.1158/1078-0432.22478631
https://doi.org/10.1158/1078-0432.22478631
Autor:
Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Haydee Ojeda-Fournier, Tone F. Bathen, Agnes Østlie, Neil P. Jerome, Michael Hahn, Grace S. Ahn, Boya Abudu, Joshua Kuperman, Somaye Zare, Anne M. Wallace, Tyler M. Seibert, Igor Vidić, Christopher C. Conlin, Ana E. Rodríguez-Soto, Maren M. Sjaastad Andreassen
Probability density colormaps for the three-component model given C1 and C2 for all voxels per patient for (A.) cancer (cancer ROI) and (B.) healthy breast tissue (control ROI).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::901d7555fbe3d510992a916ebf5d6c1a
https://doi.org/10.1158/1078-0432.22478628.v1
https://doi.org/10.1158/1078-0432.22478628.v1
Autor:
Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Haydee Ojeda-Fournier, Tone F. Bathen, Agnes Østlie, Neil P. Jerome, Michael Hahn, Grace S. Ahn, Boya Abudu, Joshua Kuperman, Somaye Zare, Anne M. Wallace, Tyler M. Seibert, Igor Vidić, Christopher C. Conlin, Ana E. Rodríguez-Soto, Maren M. Sjaastad Andreassen
Probability density colormaps for the three-component model given C1 and C2 for all voxels per patient for (A.) cancer (cancer ROI) and (B.) healthy breast tissue (control ROI).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::199bc69b5e218b5d0874df671f4f7905
https://doi.org/10.1158/1078-0432.22478622
https://doi.org/10.1158/1078-0432.22478622
Autor:
Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Haydee Ojeda-Fournier, Tone F. Bathen, Agnes Østlie, Neil P. Jerome, Michael Hahn, Grace S. Ahn, Boya Abudu, Joshua Kuperman, Somaye Zare, Anne M. Wallace, Tyler M. Seibert, Igor Vidić, Christopher C. Conlin, Ana E. Rodríguez-Soto, Maren M. Sjaastad Andreassen
Probability density colormaps for the three-component model given C1 and C2 for all voxels per patient for (A.) cancer (cancer ROI) and (B.) healthy breast tissue (control ROI).
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6315cbfcf3c42dca24e79cac91553033
https://doi.org/10.1158/1078-0432.22478625.v1
https://doi.org/10.1158/1078-0432.22478625.v1
Publikováno v:
Journal of Energy - Energija. 70:7-13
Electrical energy is a specific commodity because it can’t be stored in significant quantities, so accurate day-ahead forecasting of total consumption plays a crucial role in stable operation of the whole power system. In order to maintain the adeq
Autor:
Ana E. Rodríguez‐Soto, Maren M. Sjaastad Andreassen, Lauren K. Fang, Christopher C. Conlin, Helen H. Park, Grace S. Ahn, Hauke Bartsch, Joshua Kuperman, Igor Vidić, Haydee Ojeda‐Fournier, Anne M. Wallace, Michael Hahn, Tyler M. Seibert, Neil Peter Jerome, Agnes Østlie, Tone Frost Bathen, Pål Erik Goa, Rebecca Rakow‐Penner, Anders M. Dale
Publikováno v:
Magn Reson Med
PURPOSE: Restriction spectrum imaging (RSI) decomposes the diffusion-weighted (DW) MRI signal into separate diffusion components of known apparent diffusion coefficients (ADCs). The number of diffusion components and optimal ADCs for RSI are organ-sp
Autor:
Somaye Zare, Haydee Ojeda-Fournier, Maren M. Sjaastad Andreassen, Tone Frost Bathen, Anders M. Dale, Rebecca Rakow-Penner, Pål Erik Goa, Grace S. Ahn, Igor Vidić, Boya Abudu, Ana E. Rodríguez-Soto, Tyler M. Seibert, Joshua M. Kuperman, Agnes Østlie, Neil P. Jerome, Michael Hahn, Anne M. Wallace, Christopher C. Conlin
PurposeDiffusion-weighted magnetic resonance imaging (DW-MRI) is a contrast-free modality that has demonstrated ability to discriminate between pre-defined benign and malignant breast lesions. However, the ability of DW-MRI to discriminate cancer tis
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08d15257ee53cebf4d9edd36af526fc5
https://doi.org/10.1101/2020.09.03.20179481
https://doi.org/10.1101/2020.09.03.20179481
Autor:
Igor, Vidić, Liv, Egnell, Neil P, Jerome, Nathan S, White, Roshan, Karunamuni, Rebecca, Rakow-Penner, Anders M, Dale, Tone F, Bathen, Pål Erik, Goa
Publikováno v:
Magnetic resonance in medicineReferences. 84(2)
To evaluate different non-Gaussian representations for the diffusion-weighted imaging (DWI) signal in the b-value range 200 to 3000 s/mmForty-three patients diagnosed with benign (n = 18) or malignant (n = 25) tumors of the breast underwent DWI (b-va
Autor:
Igor, Vidić, Liv, Egnell, Neil P, Jerome, Jose R, Teruel, Torill E, Sjøbakk, Agnes, Østlie, Hans E, Fjøsne, Tone F, Bathen, Pål Erik, Goa
Publikováno v:
Journal of magnetic resonance imaging : JMRI. 47(5)
Diffusion-weighted MRI (DWI) is currently one of the fastest developing MRI-based techniques in oncology. Histogram properties from model fitting of DWI are useful features for differentiation of lesions, and classification can potentially be improve