Zobrazeno 1 - 5
of 5
pro vyhledávání: '"Ignacio Viedma"'
Publikováno v:
IET Biometrics. 8:340-350
Most gender classifications methods from NIR images have used iris information. Recent work has explored the use of the whole periocular iris region which has surprisingly achieve better results. This suggests the most relevant information for gender
Publikováno v:
AI and Deep Learning in Biometric Security ISBN: 9781003003489
AI and Deep Learning in Biometric Security
AI and Deep Learning in Biometric Security
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::56d03817e8134838cb7a9d16a74ad0ad
https://doi.org/10.1201/9781003003489-10
https://doi.org/10.1201/9781003003489-10
Publikováno v:
Selfie Biometrics ISBN: 9783030269715
Selfie Biometrics
Selfie Biometrics
Selfie soft biometrics has great potential for various applications ranging from marketing, security, and online banking. However, it faces many challenges since there is limited control in data acquisition conditions. This chapter presents a super-r
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::634441ddb4e31c1a40265edce16f32d7
https://doi.org/10.1007/978-3-030-26972-2_11
https://doi.org/10.1007/978-3-030-26972-2_11
Autor:
Juan Tapia, Ignacio Viedma
Publikováno v:
IPAS
In this paper, we present an approach of automatic pixels feature extraction for Gender Classification using Near-Infra-Red Periocular iris images with Deep learning. Previous works on gender-from-iris have been tried to find manually the best featur
Autor:
Juan Tapia, Ignacio Viedma
Publikováno v:
IJCB
Gender classification from multispectral periocular and iris images is a new topic on soft-biometric research. The feature extracted from RGB images and Near Infrared Images shows complementary information independent of the spectrum of the images. T