Zobrazeno 1 - 10
of 70
pro vyhledávání: '"Idit Diamant"'
Publikováno v:
IEEE Transactions on Biomedical Engineering. 64:1380-1392
Objective: We present a novel variant of the bag-of-visual-words (BoVW) method for automated medical image classification. Methods: Our approach improves the BoVW model by learning a task-driven dictionary of the most relevant visual words per task u
Publikováno v:
Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization. 6:259-263
We demonstrate the feasibility of detecting pathology in chest X-rays using deep learning approaches based on non-medical learning. Convolutional neural networks (CNN) learn higher level image representations. In this work, we explore the features ex
Deep learning methods, and in particular convolutional neural networks (CNNs), have led to an enormous breakthrough in a wide range of computer vision tasks, primarily by using large-scale annotated datasets. However, obtaining such datasets in the m
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::f547405f28231b1397d913a4c25e2635
http://arxiv.org/abs/1803.01229
http://arxiv.org/abs/1803.01229
Autor:
Avi, Ben-Cohen, Eyal, Klang, Idit, Diamant, Noa, Rozendorn, Stephen P, Raskin, Eli, Konen, Michal Marianne, Amitai, Hayit, Greenspan
Publikováno v:
Academic radiology. 24(12)
This study aimed to provide decision support for the human expert, to categorize liver metastases into their primary cancer sites. Currently, once a liver metastasis is detected, the process of finding the primary site is challenging, time-consuming,
Autor:
Ofer Geva, Sivan Lieberman, Eli Konen, Yaniv Bar, Hayit Greenspan, G. Zimmerman, Lior Wolf, Idit Diamant
Publikováno v:
Deep Learning for Medical Image Analysis
The goal of this chapter is to give an overview of the research we have been conducting in automated X-ray pathology detection for the past 10 years, from bag-of-visual-words (BoVW) models to the Convolutional Neural Network (CNN) Deep Learning schem
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::d1b04259de2eee08e569e4f6f1c83cdd
https://doi.org/10.1016/b978-0-12-810408-8.00018-3
https://doi.org/10.1016/b978-0-12-810408-8.00018-3
Autor:
R. Venkatesh Babu, Yaniv Bar, Joseph Blair, Andrew P. Bradley, Gustavo Carneiro, Hao Chen, Erik B. Dam, Idit Diamant, Qi Dou, Michael D. Feldman, Renee Frank, Yaozong Gao, Bogdan Georgescu, Ofer Geva, Florin C. Ghesu, Hayit Greenspan, Yanrong Guo, Pheng-Ann Heng, Joachim Hornegger, R. Todd Hurst, Christian Igel, Vamsi K. Ithapu, Andrew Janowczyk, Sterling C. Johnson, Michiel Kallenberg, Christopher B. Kendall, Minjeong Kim, Eli Konen, Srinivas S.S. Kruthiventi, Jianming Liang, Rui Liao, Sivan Lieberman, Le Lu, Anant Madabhushi, Kenneth B. Margulies, Dimitris Metaxas, Shun Miao, Vincent C.T. Mok, Konda R. Mopuri, Jacinto Nascimento, Hien Van Nguyen, Mads Nielsen, Jeffrey J. Nirschl, Akshay Pai, Eliot G. Peyster, Nikita Prabhu, Jing Qin, Ravi K. Sarvadevabhatla, Dinggang Shen, Lin Shi, Hoo-Chang Shin, Jae Y. Shin, Vikas Singh, Stefan Sommer, Suraj Srinivas, Heung-Il Suk, Ronald M. Summers, Nima Tajbakhsh, Yuan-Ching Teng, Raviteja Vemulapalli, Defeng Wang, Jane Z. Wang, Shaoyu Wang, Lior Wolf, Guorong Wu, Yuanpu Xie, Fuyong Xing, Zhennan Yan, Lin Yang, Lequan Yu, Yiqiang Zhan, Shaoting Zhang, Lei Zhao, S. Kevin Zhou, Xiang Sean Zhou, Gali Zimmerman
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::08515dc6c341cb0e65d35266883668cf
https://doi.org/10.1016/b978-0-12-810408-8.00029-8
https://doi.org/10.1016/b978-0-12-810408-8.00029-8
Publikováno v:
Patch-Based Techniques in Medical Imaging ISBN: 9783319674339
Patch-MI@MICCAI
Patch-MI@MICCAI
Automatic detection of liver lesions in CT images poses a great challenge for researchers. In this work we present a deep learning approach that models explicitly the variability within the non-lesion class, based on prior knowledge of the data, to s
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51ce44574d3a731ad7138f5c77ed563b
https://doi.org/10.1007/978-3-319-67434-6_15
https://doi.org/10.1007/978-3-319-67434-6_15
Publikováno v:
Medical Imaging: Image Processing
Classification of clustered breast microcalcifications into benign and malignant categories is an extremely challenging task for computerized algorithms and expert radiologists alike. In this paper we present a novel method for feature selection base
Publikováno v:
Deep Learning and Data Labeling for Medical Applications ISBN: 9783319469751
LABELS/DLMIA@MICCAI
LABELS/DLMIA@MICCAI
In this work we explore a fully convolutional network (FCN) for the task of liver segmentation and liver metastases detection in computed tomography (CT) examinations. FCN has proven to be a very powerful tool for semantic segmentation. We explore th
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::05f6a0739b161560779fddffef7bd018
https://doi.org/10.1007/978-3-319-46976-8_9
https://doi.org/10.1007/978-3-319-46976-8_9
Publikováno v:
Medical Engineering & Physics. 30:624-630
Little is known about the distributions of mechanical strains and stresses in individual trabeculae of cancellous bone, despite evidence that tissue-level strains affect the metabolism of bone. Recently, micro-finite element (micro-FE) studies have p