Zobrazeno 1 - 10
of 46
pro vyhledávání: '"Idà, Monica"'
We consider 0-dimensional schemes supported at a single point in n-space that are m-symmetric, i.e. that intersect any smooth curve passing through the point with length m, and the ones among them that are maximal with respect to inclusion (called m-
Externí odkaz:
http://arxiv.org/abs/2305.08162
We study the Jacobian scheme of a plane algebraic curve at an ordinary singularity, characterizing it through a geometric property. We compute the Tjurina number for a family of curves at an ordinary singularity showing that it reaches the minimum po
Externí odkaz:
http://arxiv.org/abs/2302.07042
The paper is an introduction to the use of the classical Newton-Puiseux procedure, oriented to an algorithmic description of it. This procedure enables to get polynomial approximations for parameterizations of branches of an algebraic plane curve at
Externí odkaz:
http://arxiv.org/abs/2204.05691
Autor:
Gimigliano, Alessandro, Idà, Monica
We study the relation between the type of a double point of a plane curve and the curvilinear 0-dimensional subschemes of the curve at the point. An Algorithm related to a classical procedure for the study of double points via osculating curves is de
Externí odkaz:
http://arxiv.org/abs/2201.06032
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
We consider the parameterization ${\mathbf{f}}=(f_0,f_1,f_2)$ of a plane rational curve $C$ of degree $n$, and we want to study the singularities of $C$ via such parameterization. We do this by using the projection from the rational normal curve $C_n
Externí odkaz:
http://arxiv.org/abs/1609.01877
Let $C$ be a plane rational curve of degree $d$ and $p:\tilde C \rightarrow C$ its normalization. We are interested in the splitting type $(a,b)$ of $C$, where $\mathcal{O}_{\mathbb{P}^1}(-a-d)\oplus \mathcal{O}_{\mathbb{P}^1}(-b-d)$ gives the syzigi
Externí odkaz:
http://arxiv.org/abs/1507.02227
Given an immersion $\phi: P^1 \to \P^2$, we give new approaches to determining the splitting of the pullback of the cotangent bundle. We also give new bounds on the splitting type for immersions which factor as $\phi: P^1 \cong D \subset X \to P^2$,
Externí odkaz:
http://arxiv.org/abs/1102.1093
Autor:
Ballico, Edoardo, Idà, Monica
Let Z be a fat point scheme in P^2 supported on general points. Here we prove that if the multiplicities are at most 3 and the length of Z is sufficiently high then the number of generators of the homogeneous ideal I_Z in each degree is as small as n
Externí odkaz:
http://arxiv.org/abs/0710.1588
We consider the open problem of determining the graded Betti numbers for fat point subschemes supported at general points of the projective plane. We relate this problem to the open geometric problem of determining the splitting type of the pullback
Externí odkaz:
http://arxiv.org/abs/0706.2588