Zobrazeno 1 - 10
of 12
pro vyhledávání: '"Ibrahim Adalar"'
Autor:
Rauf Amirov, Ibrahim Adalar
Publikováno v:
Electronic Journal of Differential Equations, Vol 2017, Iss 50,, Pp 1-3 (2017)
We show that there is no function $q(x)\in L_2(0,1)$ which is the potential of a Sturm-Liouville problem with Dirichlet boundary condition whose spectrum is a set depending nonlinearly on the set of prime numbers as suggested by Mingarelli [7].
Externí odkaz:
https://doaj.org/article/bbcaf2523dea48f59a0907911fd0da21
Autor:
İbrahim Adalar
Publikováno v:
Quaestiones Mathematicae. 45:485-496
In this paper, we consider a half inverse problem for a diffusion operator on a time scale which is the union of an interval and another arbitrary time scale such as T =[0; a1] [ T1. We give a Hochstadt-Lieberman type theorem for this problem and som
Autor:
A. Sinan Ozkan, Ibrahim Adalar
In this paper, Dirac operator with some integral type nonlocal boundary conditions is studied. We show that the coefficients of the problem can be uniquely determined by a dense set of nodal points. Moreover, we give an algorithm for the reconstructi
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::6459fd5882e471de464876cb71cbfea2
http://arxiv.org/abs/2203.15397
http://arxiv.org/abs/2203.15397
Autor:
Ibrahim Adalar
In this paper, we consider a quadratic pencil of Sturm–Liouville operator on closed sets. We study an interior-inverse problem for this kind operator and give a uniqueness theorem with an appropriate example.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::c930ea3e8121470678696394400ec4da
https://hdl.handle.net/20.500.12418/13787
https://hdl.handle.net/20.500.12418/13787
Autor:
A. Sinan Ozkan, İbrahim Adalar
In this paper, a Sturm--Liouville problem with some nonlocal boundary conditions of the Bitsadze-Samarskii type is studied. We show that the coefficients of the problem can be uniquely determined by a dense set of nodal points. Moreover, we give an a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::a4dece3cded14b3dc58e30d8174c97dd
Autor:
İbrahim Adalar
Publikováno v:
Cumhuriyet Science Journal, Vol 40, Iss 1, Pp 108-116 (2019)
Volume: 40, Issue: 1 108-116
Cumhuriyet Science Journal
Volume: 40, Issue: 1 108-116
Cumhuriyet Science Journal
Bu makalede,Sturm-Liouville operatörlerinin ters spektral problemleri ele alınmıştır. Bazıyeni teklik teoremleri ve Mochizuki-Trooshin teoreminin benzetimleriispatlanmıştır.
In this paper, theinverse spectral problems of Sturm-Liouville
In this paper, theinverse spectral problems of Sturm-Liouville
Autor:
A. Sinan Ozkan, İbrahim Adalar
Publikováno v:
Analysis and Mathematical Physics. 10
In this paper, a regular Sturm–Liouville operator is considered on time scale $$\mathbb {T}=[0,a_{1}]\cup [a_{2},l].$$ We study an interior inverse problem for this kind operator and give a Mochizuki–Trooshin type theorem.
Autor:
Rauf Amirov, İbrahim Adalar
Publikováno v:
Cumhuriyet Science Journal, Vol 38, Iss 3, Pp 488-491 (2017)
Volume: 38, Issue: 3 488-491
Cumhuriyet Science Journal
Volume: 38, Issue: 3 488-491
Cumhuriyet Science Journal
In this paper, the relationship between the positive eigenvalues ofdiffusion operators and prime numbers is investigated. We also propose a Sturm-Liouvilleproblem with Coulomb singularity that shows eigenvalues the distribution ofprime numbers.
Autor:
A. Sinan Ozkan, İbrahim Adalar
Publikováno v:
Inverse Problems. 36:025015
Autor:
ibrahim adalar
Publikováno v:
ibrahim adalar
Web of Science
Web of Science
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::606a08fc71eceea063797f4da9ba1fb7
http://www.math.nthu.edu.tw/~amen/
http://www.math.nthu.edu.tw/~amen/