Zobrazeno 1 - 10
of 47
pro vyhledávání: '"Iandoli, Felice"'
Autor:
Iandoli, Felice
We improve the result by Feola and Iandoli [J. de Math. Pures et App., 157:243-281, 2022], showing that quasilinear Hamiltonian Schr\"odinger type equations are well posed on $H^s(\mathbb{T}^d)$ if $s>d/2+3$. We exploit the sharp paradifferential cal
Externí odkaz:
http://arxiv.org/abs/2309.06117
In this paper we provide a local well posedness result for a quasilinear beam-wave system of equations on a one-dimensional spatial domain under periodic and Dirichlet boundary conditions. This kind of systems provides a refined model for the time-ev
Externí odkaz:
http://arxiv.org/abs/2306.11037
We prove the strong ill-posedness in the sense of Hadamard of the two-dimensional Boussinesq equations in $W^{1, \infty}(\mathbb{R}^2)$ without boundary, extending to the case of systems the method that Shikh Khalil \& Elgindi arXiv:2207.04556v1 deve
Externí odkaz:
http://arxiv.org/abs/2303.16167
Autor:
Iandoli, Felice, Niu, Jingrui
We prove exact controllability for quasi-linear Hamiltonian Schr\"odinger equations on tori of dimension greater or equal then two. The result holds true for sufficiently small initial conditions satisfying natural minimal regularity assumptions, pro
Externí odkaz:
http://arxiv.org/abs/2303.09625
Autor:
Iandoli, Felice, Ivanovici, Oana
We consider the wave equation with Dirichlet boundary conditions in the exterior of a cylinder in R 3 and we construct a global in time parametrix to derive sharp dispersion estimates for all frequencies (low and high) and, as a corollary, Strichartz
Externí odkaz:
http://arxiv.org/abs/2203.16968
Autor:
Iandoli, Felice
We prove local in time well-posedness for a class of quasilinear Hamiltonian KdV-type equations with periodic boundary conditions, more precisely we show existence, uniqueness and continuity of the solution map. We improve the previous result in \cit
Externí odkaz:
http://arxiv.org/abs/2202.06710
Autor:
Iandoli, Felice, Niu, Jingrui
Publikováno v:
In Journal of Differential Equations 5 May 2024 390:125-170
Autor:
Iandoli, Felice, Ivanovici, Oana
Publikováno v:
In Journal of Functional Analysis 1 May 2024 286(9)
Publikováno v:
In Nonlinear Analysis March 2024 240
We consider the quantum hydrodynamic system on a $d$-dimensional irrational torus with $d=2,3$. We discuss the behaviour, over a "non trivial" time interval, of the $H^s$-Sobolev norms of solutions. More precisely we prove that, for generic irrationa
Externí odkaz:
http://arxiv.org/abs/2105.07243