Zobrazeno 1 - 10
of 82
pro vyhledávání: '"Iain T. Adamson"'
Autor:
Iain T. Adamson
All young computer scientists who aspire to write programs must learn something about algorithms and data structures. This book does exactly that. Based on lecture courses developed by the author over a number of years the book is written in an infor
Autor:
Iain T. Adamson
This book has been called a Workbook to make it clear from the start that it is not a conventional textbook. Conventional textbooks proceed by giving in each section or chapter first the definitions of the terms to be used, the concepts they are to w
Autor:
Iain T. Adamson
Publikováno v:
Introduction to Field Theory
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::51a9c13ff441005de07ecaf56b7fc957
https://doi.org/10.1017/cbo9780511600593.003
https://doi.org/10.1017/cbo9780511600593.003
Autor:
Iain T. Adamson
Publikováno v:
A Set Theory Workbook ISBN: 9780817640286
A relation R is said to be functional if each element of its domain has exactly one R-relative; a functional relation is also called a function. If R is a functional relation then for each element a of its domain we denote the unique R-relative of a
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::366e0c1990e401d853b8515b4c201b95
https://doi.org/10.1007/978-0-8176-8138-8_4
https://doi.org/10.1007/978-0-8176-8138-8_4
Autor:
Iain T. Adamson
Publikováno v:
A Set Theory Workbook ISBN: 9780817640286
135. Let f and g be bijections from a to A and b to B respectively. Define the mapping h from (a × 0) ∪ (b × 1) to A ∪ B by setting $$h\left( x \right) = \left\{ {\begin{array}{*{20}c}{f\left( a \right) if x = \left( {a,0} \right)} \\{g\left( b
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::f6e79401a375e731892f22807cc55d75
https://doi.org/10.1007/978-0-8176-8138-8_27
https://doi.org/10.1007/978-0-8176-8138-8_27
Autor:
Iain T. Adamson
Publikováno v:
A Set Theory Workbook ISBN: 9780817640286
Exercise 110. Suppose that for every set × there exists a well-ordering on x. Deduce the Axiom of Choice.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_________::3e4662d838b1093af140698f155b6e09
https://doi.org/10.1007/978-0-8176-8138-8_11
https://doi.org/10.1007/978-0-8176-8138-8_11