Zobrazeno 1 - 10
of 174
pro vyhledávání: '"Iagar, Razvan"'
Autor:
Iagar, Razvan Gabriel, Sánchez, Ariel
Some qualitative properties of radially symmetric solutions to the non-homogeneous heat equation with critical density and weighted source $$ |x|^{-2}\partial_tu=\Delta u+|x|^{\sigma}u^p, \quad (x,t)\in\mathbb{R}^N\times(0,T), $$ are obtained, in the
Externí odkaz:
http://arxiv.org/abs/2411.12902
Autor:
Iagar, Razvan Gabriel, Sánchez, Ariel
The following Fisher-KPP type equation $$ u_t=Ku_{xx}-Bu^q+Au^p, \quad (x,t)\in\real\times(0,\infty), $$ with $p>q>0$ and $A$, $B$, $K$ positive coefficients, is considered. For both $p>q>1$ and $p>1$, $q=1$, we construct stationary solutions, establ
Externí odkaz:
http://arxiv.org/abs/2411.12900
Consider $m\>1$, $N\ge 1$ and $\max\{-2,-N\}\<\sigma\<0$. The Hardy-H\'enon equation with sublinear absorption\begin(equation*}- \Delta v(x) - |x|^\sigma v(x) + \frac{1}{m-1} v^{1/m}(x)= 0, \qquad x\in\mathbb{R}^N,\end{equation*}is shown to have at l
Externí odkaz:
http://arxiv.org/abs/2410.05909
Existence of a specific family of \emph{eternal solutions} in exponential self-similar form is proved for the following porous medium equation with strong absorption $$\partial_t u-\Delta u^m+|x|^{\sigma}u^q = 0 \;\;\text{ in }\;\; (0,\infty)\times\m
Externí odkaz:
http://arxiv.org/abs/2408.02466
Solutions in self-similar form presenting finite time extinction to the singular diffusion equation with gradient absorption $$\partial_t u - \mathrm{div}(|\nabla u|^{p-2}\nabla u) +|\nabla u|^{q}=0 \qquad {\rm in} \ (0,\infty)\times\mathbb{R}^N$$ ar
Externí odkaz:
http://arxiv.org/abs/2406.11518
This is the first of a two-parts work on the qualitative properties and large time behavior for the following quasilinear equation involving a spatially inhomogeneous absorption $$ \partial_tu=\Delta u^m-|x|^{\sigma}u^p, $$ posed for $(x,t)\in\mathbf
Externí odkaz:
http://arxiv.org/abs/2406.00349
Autor:
Iagar, Razvan Gabriel, Sánchez, Ariel
We classify radially symmetric self-similar profiles presenting finite time blow-up to the quasilinear diffusion equation with weighted source $$ u_t=\Delta u^m+|x|^{\sigma}u^p, $$ posed for $(x,t)\in\real^N\times(0,T)$, $T>0$, in dimension $N\geq1$
Externí odkaz:
http://arxiv.org/abs/2404.10504
Autor:
Iagar, Razvan Gabriel, Sánchez, Ariel
We establish the existence of self-similar solutions presenting finite time blow-up to the quasilinear reaction-diffusion equation $$ u_t=\Delta u^m + u^p, $$ posed in dimension $N\geq3$, $m>1$. More precisely, we show that there is always at least o
Externí odkaz:
http://arxiv.org/abs/2402.12455
Well-posedness and a number of qualitative properties for solutions to the Cauchy problem for the following nonlinear diffusion equation with a spatially inhomogeneous source $$ \partial_tu=\Delta u^m+|x|^{\sigma}u^p, $$ posed for $(x,t)\in\mathbb{R}
Externí odkaz:
http://arxiv.org/abs/2310.11224
Existence of specific \emph{eternal solutions} in exponential self-similar form to the following quasilinear diffusion equation with strong absorption$$\partial_t u=\Delta u^m-|x|^{\sigma}u^q,$$posed for $(t,x)\in(0,\infty)\times\mathbb{R}^N$, with $
Externí odkaz:
http://arxiv.org/abs/2310.07270