Zobrazeno 1 - 10
of 23
pro vyhledávání: '"IRENE V. PASQUETTO"'
Publikováno v:
Engaging Science, Technology, and Society, Vol 6, Pp 111-132 (2020)
We apply the concept of invisible labor, as developed by labor scholars over the last forty years, to data-intensive science. Drawing on a fifteen-year corpus of research into multiple domains of data-intensive science, we use a series of ethnographi
Externí odkaz:
https://doaj.org/article/b97baa7cab274a4d9c78e3791e7f05d9
Autor:
Irene V. Pasquetto, Briony Spire-Thompson, Michelle A. Amazeen, Fabrício Benevenuto, Nadia M. Brashier, Robert M. Bond, Lia C. Bozarth, Ceren Budak, Ullrich K. H. Ecker, Lisa K. Fazio, Emilio Ferrara, Andrew J. Flanagin, Alessandro Flammini, Deen Freelon, Nir Grinberg, Ralph Hertwig, Kathleen Hall Jamieson, Kenneth Joseph, Jason J. Jones, R. Kelly Garrett, Daniel Kreiss, Shannon McGregor, Jasmine McNealy, Drew Margolin, Alice Marwick, Filippo Menczer, Miriam J. Metzger, Seungahn Nah, Stephan Lewandowsky, Phillipp Lorenz-Spreen, Pablo Ortellado, Gordon Pennycook, Ethan Porter, David G. Rand, Ronald E. Robertson, Francesca Tripodi, Soroush Vosoughi, Chris Vargo, Onur Varol, Brian E. Weeks, John Wihbey, Thomas J. Wood, Kai-Cheng Yang
Publikováno v:
Harvard Kennedy School Misinformation Review, Vol 1, Iss 8 (2020)
Externí odkaz:
https://doaj.org/article/2ebc1f70333b43c7bf12a5e89f1c64b7
Publikováno v:
Harvard Data Science Review, Vol 1, Iss 2 (2019)
Externí odkaz:
https://doaj.org/article/97a215e255fb4be78cdf59534c124ddc
Publikováno v:
Data Science Journal, Vol 16 (2017)
While science policy promotes data sharing and open data, these are not ends in themselves. Arguments for data sharing are to reproduce research, to make public assets available to the public, to leverage investments in research, and to advance resea
Externí odkaz:
https://doaj.org/article/2f3662d7fe9a4961a73eb5c04fba44b3
Autor:
Asha, Shajahan, Irene V, Pasquetto
Publikováno v:
American family physician. 106(2)
Autor:
Jonas Kaiser, Dariusz Jemielniak, Siobhán Grayson, Natalie Gyenes, Paola Ricaurte, Amy X. Zhang, Timothy James Neff, Dimitra Dimitrakopoulou, Javier Ruiz-Soler, Irene V. Pasquetto
Publikováno v:
Harvard Kennedy School Misinformation Review, Vol 2, Iss 5 (2021)
Harvard Kennedy School Misinformation Review
Harvard Kennedy School Misinformation Review
We review 100 articles published from 2000 to early 2020 that research aspects of vaccine hesitancy in online communication spaces and identify several gaps in the literature prior to the COVID-19 pandemic. These gaps relate to five areas: disciplina
Publikováno v:
AoIR Selected Papers of Internet Research.
This paper examines the potential role of social media in enhancing the understanding and perception of victims of police killings and the data collection surrounding these incidents. Through a series of content analysis and social media mining exerc
Publikováno v:
CHI
Pierre, J, Crooks, R, Currie, M E, Paris, B S & Pasquetto, I V 2021, Getting ourselves together : Data-centered participatory design research & epistemic burden . in CHI'21 : Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems ., 406, Association for Computing Machinery (ACM), New York, NY, pp. 1-11, CHI 2021, 8/05/21 . https://doi.org/10.1145/3411764.3445103
Pierre, J, Crooks, R, Currie, M E, Paris, B S & Pasquetto, I V 2021, Getting ourselves together : Data-centered participatory design research & epistemic burden . in CHI'21 : Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems ., 406, Association for Computing Machinery (ACM), New York, NY, pp. 1-11, CHI 2021, 8/05/21 . https://doi.org/10.1145/3411764.3445103
Data-centered participatory design research projects—wherein researchers collaborate with community members for the purpose of gathering, generating, or communicating data about the community or their causes—can place epistemic burdens on minorit
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::b255adc4e4215afc3a7dd794af1ae743
https://escholarship.org/uc/item/09g7n8gh
https://escholarship.org/uc/item/09g7n8gh
Autor:
Ullrich K. H. Ecker, Filippo Menczer, Kai-Cheng Yang, Shannon C. McGregor, Ceren Budak, Andrew J. Flanagin, Gordon Pennycook, Fabrício Benevenuto, Lisa K. Fazio, Lia Bozarth, Briony Spire-Thompson, Nadia M. Brashier, Phillipp Lorenz-Spreen, Ralph Hertwig, Miriam J. Metzger, Thomas J. Wood, Alice E. Marwick, Soroush Vosoughi, R. Kelly Garrett, Kenneth Joseph, Michelle A. Amazeen, Ronald E. Robertson, Kathleen Hall Jamieson, Jason J. Jones, David G. Rand, Robert M. Bond, Chris J. Vargo, Jasmine E. McNealy, Ethan Porter, Brian E. Weeks, Deen Freelon, Pablo Ortellado, Emilio Ferrara, Irene V. Pasquetto, Stephan Lewandowsky, Daniel Kreiss, Onur Varol, Francesca Tripodi, John Wihbey, Alessandro Flammini, Seungahn Nah, Drew Margolin, Nir Grinberg
Publikováno v:
Harvard Kennedy School Misinformation Review, Vol 1, Iss 8 (2020)
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
The Harvard Kennedy School Misinformation Review
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual)
Universidade de São Paulo (USP)
instacron:USP
The Harvard Kennedy School Misinformation Review
Written by Michelle A. Amazeen, Fabrício Benevenuto, Nadia M. Brashier, Robert M. Bond, Lia C. Bozarth, Ceren Budak, Ullrich K. H. Ecker, Lisa K. Fazio, Emilio Ferrara, Andrew J. Flanagin, Ales-sandro Flammini, Deen Freelon, Nir Grinberg, Ralph Hert
Autor:
Irene V. Pasquetto, Felix Schoeller, Aki Nikolaidis, Kathy L. Hudson, Célya Gruson-Daniel, Anirudh Krishnakumar, Anibal Sólon Heinsfeld, Jason Bobe, John A. Naslund, François Taddei, Jon Clucas, Arno Klein, Matthieu Schapira, Dusan Misevic, Tohar Scheininger, Camille Nebeker, Pattie Pramila Gonsalves, Anna McCollister-Slipp, Ariel B. Lindner, Gabriela Sanchez, Aïda Bafeta
Publikováno v:
PLoS Computational Biology
PLoS Computational Biology, Public Library of Science, 2020, 16 (9), pp.e1007846. ⟨10.1371/journal.pcbi.1007846⟩
PLoS Computational Biology, Vol 16, Iss 9, p e1007846 (2020)
PLoS Computational Biology, 2020, 16 (9), pp.e1007846. ⟨10.1371/journal.pcbi.1007846⟩
PLoS Computational Biology, Public Library of Science, 2020, 16 (9), pp.e1007846. ⟨10.1371/journal.pcbi.1007846⟩
PLoS Computational Biology, Vol 16, Iss 9, p e1007846 (2020)
PLoS Computational Biology, 2020, 16 (9), pp.e1007846. ⟨10.1371/journal.pcbi.1007846⟩
International audience