Zobrazeno 1 - 5
of 5
pro vyhledávání: '"IMATOMI, Kohtaro"'
Ohno's relation is a generalization of both the sum formula and the duality formula for multiple zeta values. Oyama gave a similar relation for finite multiple zeta values, defined by Kaneko and Zagier. In this paper, we prove relations of similar na
Externí odkaz:
http://arxiv.org/abs/1806.09299
We prove that the sum of multiple zeta-star values over all indices inserted two 2's into the string $(\underbrace{3,1, ..., 3,1}_{2n})$ is evaluated to a rational multiple of powers of $\pi^2$. We also establish certain conjectures on evaluations of
Externí odkaz:
http://arxiv.org/abs/0912.1951
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Journal of Integer Sequences. 17:1-12
We define the multi-poly-Bernoulli numbers slightly differently from the similar numbers given in earlier papers by Bayad, Hamahata, and Masubuchi, and study their basic properties. Our motivation for the new definition is the connection to “finite
Publikováno v:
京都産業大学論集. 自然科学系列. 42:1-20
We prove that the sum of multiple zeta-star values over all indices inserted two 2’s into the string 3; 1 ,...,3; 1 is evaluated to a rational multiple of powers of π^2. We also establish certain conjectures on evaluations of multiple zeta-star va