Zobrazeno 1 - 10
of 47
pro vyhledávání: '"I.V. Boykov"'
Autor:
I.V. Boykov, A.A. Pivkina
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 3 (2022)
Background. When solving many physical and technical problems, a situation arises when only operators (functionals) from the objects under study (signals, images, etc.) are available for observations (measurements). It is required to restore the ob
Externí odkaz:
https://doaj.org/article/91b370c992304e66b80d41156f2a2da8
Autor:
I.V. Boykov, A.A. Pivkina
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 4 (2022)
Background. Ambartsumian equation and its generalizations are one of the main integral equations of astrophysics, which have found wide application in many areas of physics and technology. Ambartsumian equation plays an important role in the study
Externí odkaz:
https://doaj.org/article/c4b97b4ae43d484894ddc8ba7f1ace79
Autor:
I.V. Boykov, G.Yu. Salimov
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 4 (2022)
Background. Despite Gibbs effect (phenomenon) was discovered almost 170 years ago, the amount of works devoted to its research and the construction of methods of its suppression has not weakened until recently. This is due to the fact that the Gibb
Externí odkaz:
https://doaj.org/article/995c645c572d42c1b6742d8e0e3ca7ed
Autor:
I.V. Boykov, V.A. Ryazantsev
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 2 (2021)
Background. In recent decades the theory for solution of inverse and ill-posed problems has become one of the most important and fast-growing branch of modern mathematics. A relevancy of this theory is due to not only significant growth in the numb
Externí odkaz:
https://doaj.org/article/6ab6c0620085423c9387b2acfa62827c
Autor:
I.V. Boykov, A.A. Shaldaeva
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 2 (2021)
Background. Ambartsumian’s equation and its generalizations are one of the main integral equations of astrophysics, which have found wide application in many areas of physics and technology. An analytical solution to this equation is currently un
Externí odkaz:
https://doaj.org/article/c582259d3a2343c39e21d66a0c3b4990
Autor:
I.V. Boykov, P.V. Aykashev
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 1 (2021)
Background. Hypersingular integrals are now finding more and more fields of application – aerodynamics, elasticity theory, electrodynamics and geophysics. Moreover, their calculation in an analytical form is possible only in very special cases. Th
Externí odkaz:
https://doaj.org/article/e8461b1aab984cd1a27fb498fc4046a9
Autor:
I.V. Boykov, A.I. Boykova
Publikováno v:
Сибирский журнал вычислительной математики. 25:249-267
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
V.A. Ryazantsev, I.V. Boykov
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 2 (2021)
Background. In recent decades the theory for solution of inverse and ill-posed problems has become one of the most important and fast-growing branch of modern mathematics. A relevancy of this theory is due to not only significant growth in the number
Autor:
A.A. Shaldaeva, I.V. Boykov
Publikováno v:
Известия высших учебных заведений. Поволжский регион: Физико-математические науки, Iss 2 (2021)
Background. Ambartsumian’s equation and its generalizations are one of the main integral equations of astrophysics, which have found wide application in many areas of physics and technology. An analytical solution to this equation is currently unkn