Zobrazeno 1 - 10
of 34
pro vyhledávání: '"I. Sh. Kalimullin"'
Autor:
I. Sh. Kalimullin
Publikováno v:
Algebra and Logic. 61:238-241
Autor:
I. Sh. Kalimullin
Publikováno v:
Lobachevskii Journal of Mathematics. 43:582-586
Autor:
I. Sh. Kalimullin, Nikolay Bazhenov
Publikováno v:
Algebra i logika. 60:335-343
Autor:
I. Sh. Kalimullin, Nikolay Bazhenov
Publikováno v:
Algebra and Logic. 60:223-228
Autor:
I. Sh. Kalimullin, M. Kh. Faizrahmanov
Publikováno v:
Journal of Mathematical Sciences. 256:51-60
This paper is a survey of results on countable families with natural degree spectra. These results were obtained by a modification of the methodology proposed by Wechner, who first found a family of sets with the spectrum consisting precisely of nonz
Publikováno v:
Lobachevskii Journal of Mathematics. 42:735-742
Abstract We are studying the punctual structures, i.e., the primitive recursive structures on the whole set of integers. The punctual categoricity relative to a computable oracle $$f$$ means that between any two punctual copies of a structure there i
Autor:
I. Sh. Kalimullin
Publikováno v:
Algebra and Logic. 59:408-411
Publikováno v:
Algebra i logika. 59:395-402
Publikováno v:
Lobachevskii Journal of Mathematics. 41:1630-1639
It is well-known that every c.e. Turing degree is the degree of categoricity of a rigid structure. In this work we study the possibility of extension of this result to properly 2-c.e. degrees. We found a condition such that if a $$\Delta^{0}_{2}$$ -d
Publikováno v:
Siberian Mathematical Journal. 61:478-489
We construct the example of an admissible set $$\mathbb{A}$$ such that there exists a positive computable $$\mathbb{A}$$-numbering of the family of all $$\mathbb{A}$$-c.e. sets, whereas any negative computable $$\mathbb{A}$$-numberings are absent.