Zobrazeno 1 - 10
of 68
pro vyhledávání: '"I. Kh. Sabitov"'
Autor:
D. I. Sabitov, I. Kh. Sabitov
Publikováno v:
Моделирование и анализ информационных систем, Vol 19, Iss 6, Pp 161-169 (2015)
It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron i
Externí odkaz:
https://doaj.org/article/5b51c7e0e069469f97c9b2f64e2799e0
Autor:
I. Kh. Sabitov
Publikováno v:
Моделирование и анализ информационных систем, Vol 20, Iss 6, Pp 149-161 (2013)
We propose a new approach to the problem of calculations of volumes in the Lobachevsky space, and we apply this method to tetrahedra. Using some integral formulas, we present an explicit formula for the volume of a tetrahedron in the function of the
Externí odkaz:
https://doaj.org/article/3a0ea0b47c6f40d68a5cab26f5ac5895
Autor:
D. I. Sabitov, I. Kh. Sabitov
Publikováno v:
Моделирование и анализ информационных систем, Vol 19, Iss 6, Pp 161-169 (2012)
It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron i
Externí odkaz:
https://doaj.org/article/290577d8e7b44a62a76def96803c2252
Autor:
I. Kh. Sabitov
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 18:1023-1026
Autor:
I. Kh. Sabitov
Publikováno v:
Mathematical Notes. 110:126-134
It is proved that the slide bendings of cylindrical and conical surfaces are trivial only in the cases of a right circular cylinder and a right circular cone, and that in all other cases, such bendings are nontrivial, although the surfaces do not cha
Autor:
I. Kh. Sabitov, Nikolay Dolbilin, A. N. Parshin, Sergey Novikov, V S Makarov, Dmitri Orlov, Victor Matveevich Buchstaber, A. Yu. Vesnin, Dmitry Treschev, N. Yu. Erokhovets, Mikhail Kovalev, V. A. Alexandrov, O. K. Sheinman, Evgeny Vital'evich Shchepin, Lev D. Beklemishev, Alexander A. Gaifullin
Publikováno v:
Russian Mathematical Surveys. 74:1159-1162
Autor:
I. Kh. Sabitov, D. I. Sabitov
Publikováno v:
Sibirskie Elektronnye Matematicheskie Izvestiya. 16:439-448
Autor:
S. N. Mikhalev, I. Kh. Sabitov
Publikováno v:
Mathematical Notes. 98:441-447
It is proved that a locally Euclidean metric on a circular annulus admitting an isometric immersion in R2 which is multivalued of cylindrical type can be isometrically embedded in R3 as a cylindrical surface.
Autor:
I. Kh. Sabitov, D. I. Sabitov
Publikováno v:
Modelirovanie i Analiz Informacionnyh Sistem, Vol 19, Iss 6, Pp 161-169 (2012)
Modelirovanie i Analiz Informacionnyh Sistem, Vol 19, Iss 6, Pp 161-169 (2015)
Modelirovanie i Analiz Informacionnyh Sistem, Vol 19, Iss 6, Pp 161-169 (2015)
It is known that for each simplicial polyhedron P in 3-space there exists a monic polynomial Q depending on the combinatorial structure of P and the lengths of its edges only such that the volume of the polyhedron P as well as one of any polyhedron i
Autor:
I. Kh. Sabitov
Publikováno v:
Sbornik: Mathematics. 205:1787-1814
We study infinitesimal bendings of surfaces of revolution with flattening at the poles. We begin by considering the minimal possible smoothness class C{sup 1} both for surfaces and for deformation fields. Conditions are formulated for a given harmoni