Zobrazeno 1 - 10
of 58
pro vyhledávání: '"I. Broman"'
Publikováno v:
The Annals of Applied Probability. 31
We consider a semi-scale invariant version of the Poisson cylinder model which in a natural way induces a random fractal set. We show that this random fractal exhibits an existence phase transition for any dimension d≥2, and a connectivity phase tr
Autor:
Erik I. Broman
Publikováno v:
Ann. Inst. H. Poincaré Probab. Statist. 56, no. 1 (2020), 715-733
In this paper we study the existence phase transition of scale invariant random fractal models. We determine the exact value of the critical point of this phase transition for all models satisfying some weak assumptions. In addition, we show that for
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Publikováno v:
Electron. Commun. Probab.
In this paper we study the existence phase transition of the random fractal ball model and the random fractal box model. We show that both of these are in the empty phase at the critical point of this phase transition.
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::8527a56cd115279e70b53273ec301ddc
Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingesch
Publikováno v:
Ecology and Society, Vol 18, Iss 2, p 5 (2013)
Recently, an approach for global sustainability, the planetary-boundary approach (PBA), has been proposed, which combines the concept of tipping points with global-scale sustainability indicators. The PBA could represent a significant step forward in
Externí odkaz:
https://doaj.org/article/7bf0018ccc8f4277a0bb0bee31bfa7a2
Autor:
Erik I. Broman
Publikováno v:
Journal of Theoretical Probability. 29:1069-1082
We consider Galton–Watson trees with Geom\((p)\) offspring distribution. We let \(T_{\infty }(p)\) denote such a tree conditioned on being infinite. We prove that for any \(1/2\le p_1
Autor:
Filipe Mussini, Erik I. Broman
In this paper we deal with the classical problem of random cover times. We investigate the distribution of the time it takes for a Poisson process of cylinders to cover a set $A \subset \mathbb{R}^d.$ This Poisson process of cylinders is invariant un
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::e5d419bb159ca7a34bc9234304e7a947
http://arxiv.org/abs/1709.04378
http://arxiv.org/abs/1709.04378
Autor:
Erik I. Broman, Ronald Meester
Publikováno v:
Broman, E & Meester, R 2017, ' Phase Transition and Uniqueness of Levelset Percolation ', Journal of Statistical Physics, vol. 167, no. 6, pp. 1376-1400 . https://doi.org/10.1007/s10955-017-1782-2
Journal of Statistical Physics, 167(6), 1376-1400. Springer New York
Journal of Statistical Physics, 167(6), 1376-1400. Springer New York
The main purpose of this paper is to introduce and establish basic results of a natural extension of the classical Boolean percolation model (also known as the Gilbert disc model). We replace the balls of that model by a positive non-increasing atten
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::07ed038919f3c199b93aaa982d9fdfee
https://research.vu.nl/en/publications/6a3dcd9f-f9f6-4ff8-8727-abce645a7bff
https://research.vu.nl/en/publications/6a3dcd9f-f9f6-4ff8-8727-abce645a7bff
Publikováno v:
Israel Journal of Mathematics. 201:847-899
We prove that the Poisson Boolean model, also known as the Gilbert disc model, is noise sensitive at criticality. This is the first such result for a Continuum Percolation model, and the first which involves a percolation model with critical probabil