Zobrazeno 1 - 10
of 26
pro vyhledávání: '"Hyun J Kwon"'
Publikováno v:
PLoS ONE, Vol 4, Iss 1, p e4260 (2009)
BackgroundThe role of olfactory marker protein (OMP), a hallmark of mature olfactory sensory neurons (OSNs), has been poorly understood since its discovery. The electrophysiological and behavioral phenotypes of OMP knockout mice indicated that OMP in
Externí odkaz:
https://doaj.org/article/bb986dbefd494058bc15bdb250d62e35
Publikováno v:
Bioengineering, Vol 11, Iss 8, p 803 (2024)
Soft sensors based on deep learning regression models are promising approaches to predict real-time fermentation process quality measurements. However, experimental datasets are generally sparse and may contain outliers or corrupted data. This leads
Externí odkaz:
https://doaj.org/article/f0ec54a0dd8443ce87f89df1f4d3f47e
Publikováno v:
ChemistryOpen, Vol 10, Iss 8, Pp 842-847 (2021)
Abstract Phenolic compounds such as vanillic and p‐coumaric acids are pollutants of major concern in the agro‐industrial processing, thereby their effective detection in the industrial environment is essential to reduce exposure. Herein, we prese
Externí odkaz:
https://doaj.org/article/79d1f3320a0a41e19299208fab3772dc
Autor:
Dr. Elmer Ccopa Rivera, Dr. Rodney L. Summerscales, Dr. Padma P. Tadi Uppala, Dr. Hyun J. Kwon
Publikováno v:
ChemistryOpen, Vol 9, Iss 8, Pp 854-863 (2020)
Abstract The present study introduces a unified framework combining a mechanistic model with a genetic algorithm (GA) for the parameter estimation of electrochemiluminescence (ECL) kinetics of the Ru(bpy)32+/TPrA system occurring in a smartphone‐ba
Externí odkaz:
https://doaj.org/article/ce97380228f249148727859852d458ef
Autor:
Hyun J. Kwon, Elmer Ccopa Rivera, Mabio R.C. Neto, Daniel Marsh, Jonathan J. Swerdlow, Rodney L. Summerscales, Padma P. Tadi Uppala
Publikováno v:
Results in Chemistry, Vol 2, Iss , Pp 100029- (2020)
In this work, a compact, mobile phone-based ECL sensor apparatus was developed using the phone cameras, screen-printed electrodes (SPE), and mobile app for dopamine detection. Methods of DC voltage application for ECL reaction were comprehensively st
Externí odkaz:
https://doaj.org/article/62899e776a05481aa730597e435a7ad4
Autor:
Elmer Ccopa Rivera, Jonathan J. Swerdlow, Rodney L. Summerscales, Padma P. Tadi Uppala, Rubens Maciel Filho, Mabio R. C. Neto, Hyun J. Kwon
Publikováno v:
Sensors, Vol 20, Iss 3, p 625 (2020)
Understanding relationships among multimodal data extracted from a smartphone-based electrochemiluminescence (ECL) sensor is crucial for the development of low-cost point-of-care diagnostic devices. In this work, artificial intelligence (AI) algorith
Externí odkaz:
https://doaj.org/article/eec581e8260e4c2a9d81abe3d104f41a
Publikováno v:
ChemistryOpen, Vol 10, Iss 8, Pp 842-847 (2021)
Phenolic compounds such as vanillic and p‐coumaric acids are pollutants of major concern in the agro‐industrial processing, thereby their effective detection in the industrial environment is essential to reduce exposure. Herein, we present the qu
Publikováno v:
ChemistryOpen, Vol 9, Iss 8, Pp 854-863 (2020)
ChemistryOpen
ChemistryOpen
The present study introduces a unified framework combining a mechanistic model with a genetic algorithm (GA) for the parameter estimation of electrochemiluminescence (ECL) kinetics of the Ru(bpy)3 2+/TPrA system occurring in a smartphone‐based sens
Autor:
Elmer C. Rivera, Daniel C. Assumpção, Hyun J. Kwon, Christopher C. Okonkwo, Thaddeus C. Ezeji, Rubens M. Filho, Adriano P. Mariano
Publikováno v:
Biochemical Engineering Journal. 190:108738
Autor:
Solomon Kim, Hyun J Kwon, Joseph W. Taylor, Reise Campbell, Rodney Lee Summerscales, Elmer Ccopa-Rivera
Publikováno v:
Sensors
Volume 21
Issue 18
Sensors, Vol 21, Iss 6004, p 6004 (2021)
Sensors (Basel, Switzerland)
Volume 21
Issue 18
Sensors, Vol 21, Iss 6004, p 6004 (2021)
Sensors (Basel, Switzerland)
Machine learning (ML) can be an appropriate approach to overcoming common problems associated with sensors for low-cost, point-of-care diagnostics, such as non-linearity, multidimensionality, sensor-to-sensor variations, presence of anomalies, and am