Zobrazeno 1 - 10
of 666
pro vyhledávání: '"Hydrological simulation"'
Publikováno v:
Frontiers in Earth Science, Vol 12 (2024)
The Daqinghe River Basin is located in the North China Plain. In recent years, however, climate warming, drying, and intense human activities have led to declining ecosystem functions and shrinking wetlands in the region. Understanding streamflow cha
Externí odkaz:
https://doaj.org/article/3a0119d017d44fdf959d95676252f39e
Publikováno v:
Guan'gai paishui xuebao, Vol 43, Iss 1, Pp 60-68 (2024)
【Objective】 The purpose of this paper is to explore the applicability of China Meteorological Assimilation Datasets(CMADS) in hydrological simulation of Hulan River basin. 【Method】 The accuracy and spatiotemporal distribution characteristics
Externí odkaz:
https://doaj.org/article/3fac59ac75f34f26b95bbfcfd8c73ff4
Publikováno v:
Water, Vol 16, Iss 21, p 3127 (2024)
Climate change scenarios have been used to evaluate future climate change impacts and develop adaptation measures to mitigate potential damage. This study investigated strategies to reduce nonpoint source loads in an agriculturally dominated watershe
Externí odkaz:
https://doaj.org/article/8a67e1f1e7174955869b888e983e03bc
Publikováno v:
Atmosphere, Vol 15, Iss 8, p 889 (2024)
Water conservation is an essential parameter for maintaining the ecological balance. The Three-River Source Region (TRSR) cannot be an exception, since it is one of the most influential water conservation reserves in the Qinghai–Tibet Plateau in Ch
Externí odkaz:
https://doaj.org/article/43b676f188fe4ab98fe6176d5cc451c7
Publikováno v:
Hydrology Research, Vol 54, Iss 5, Pp 686-702 (2023)
Hydrological simulation in karst areas is of great importance and challenge. It is a practical way to enhance the performance of existing hydrological models in karst areas by coupling karst modules that represent hydrological processes in these area
Externí odkaz:
https://doaj.org/article/9670a71361394b32812d3c30da4dfe88
Publikováno v:
Earth, Vol 3, Iss 4, Pp 1275-1289 (2022)
Improving the quality of atmospheric precipitation measurements is crucial in the view of minimizing the uncertainty in weather forecasting, climate change impact assessment, water resource assessment and management, and drought and flood prediction.
Externí odkaz:
https://doaj.org/article/c151d0e5590d4e5d983a923f9ad03772
Autor:
Ehab Gomaa, Bilel Zerouali, Salah Difi, Khaled A. El-Nagdy, Celso Augusto Guimarães Santos, Zaki Abda, Sherif S.M. Ghoneim, Nadjem Bailek, Richarde Marques da Silva, Jitendra Rajput, Enas Ali
Publikováno v:
Heliyon, Vol 9, Iss 8, Pp e18819- (2023)
This study investigates the application of the Gaussian Radial Basis Function Neural Network (GRNN), Gaussian Process Regression (GPR), and Multilayer Perceptron Optimized by Particle Swarm Optimization (MLP-PSO) models in analyzing the relationship
Externí odkaz:
https://doaj.org/article/b5d778573a5e433e8c2774781455d62c
Publikováno v:
Water, Vol 16, Iss 4, p 579 (2024)
Ecological droughts in rivers, as a new type of drought, have been greatly discussed in the past decade. Although various studies have been conducted to identify and evaluate ecological droughts in rivers from different indices, a forecast model for
Externí odkaz:
https://doaj.org/article/9286a4afa335410eaf9305ad188e0222
Publikováno v:
Water, Vol 16, Iss 1, p 49 (2023)
Correcting the bias of satellite precipitation products (SPPs) based on ground rainfall observations is one effective approach to improve their performance. To date, there have been limited efforts in correcting the bias of hourly SPPs with mixed res
Externí odkaz:
https://doaj.org/article/e5d13cb328fa487886d9c8dac17b9826
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.