Zobrazeno 1 - 9
of 9
pro vyhledávání: '"Huynh, Cong Bang"'
Autor:
Huynh, Cong Bang
Cette thèse se situe à l'interface entre combinatoire et probabilités,et contribue à l'étude de différents modèles issus de la mécanique statistique : polymères, marches aléatoires inter-agissantes ou en milieu aléatoire, cartes aléatoire
Externí odkaz:
http://www.theses.fr/2019GREAM026/document
We study the scaling limit of essentially simple triangulations on the torus. We consider, for every $n\geq 1$, a uniformly random triangulation $G_n$ over the set of (appropriately rooted) essentially simple triangulations on the torus with $n$ vert
Externí odkaz:
http://arxiv.org/abs/1905.01873
Autor:
Huynh, Cong Bang
The phase transition of $M$-digging random on a general tree was studied by Collevecchio, Huynh and Kious (2018). In this paper, we study particularly the critical $M$-digging random walk on a superperiodic tree that is proved to be recurrent. We kee
Externí odkaz:
http://arxiv.org/abs/1812.02331
The branching-ruin number of a tree, which describes its asymptotic growth and geometry, can be seen as a polynomial version of the branching number. This quantity was defined by Collevecchio, Kious and Sidoravicius (2018) in order to understand the
Externí odkaz:
http://arxiv.org/abs/1811.08058
Autor:
Beffara, Vincent, Huynh, Cong Bang
We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias co
Externí odkaz:
http://arxiv.org/abs/1711.05527
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Autor:
Beffara, Vincent, Huynh, Cong Bang
We consider the biased random walk on a tree constructed from the set of finite self-avoiding walks on a lattice, and use it to construct probability measures on infinite self-avoiding walks. The limit measure (if it exists) obtained when the bias co
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::7e209d05a0a5dc1e3f7cac9ff44591d6
https://hal.archives-ouvertes.fr/hal-01635173
https://hal.archives-ouvertes.fr/hal-01635173
Autor:
Huynh, Cong Bang
Publikováno v:
Combinatorics [math.CO]. Université Grenoble Alpes, 2019. English. ⟨NNT : 2019GREAM026⟩
This thesis is at the interface between combinatorics and probability,and contributes to the study of a few models stemming from statisticalmechanics: polymers, self-interacting random walks and random walks inrandom environment, random maps.bigskipT
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=dedup_wf_001::0627621a0b7693945954ebdec0f6dcc1
https://tel.archives-ouvertes.fr/tel-02303529
https://tel.archives-ouvertes.fr/tel-02303529
Autor:
Cong Bang Huynh
We consider a modified version of the biased random walk on a tree constructed from the set of finite self-avoiding walks on the hexagonal lattice, and use it to construct probability measures on infinite self-avoiding walk. Under theses probability
Externí odkaz:
https://explore.openaire.eu/search/publication?articleId=doi_dedup___::2211bd76f758750088a682e30b616735
https://hal.archives-ouvertes.fr/hal-02525438v2
https://hal.archives-ouvertes.fr/hal-02525438v2