Zobrazeno 1 - 10
of 147
pro vyhledávání: '"Huynh, Chi P."'
We utilize exponential sum techniques to obtain upper and lower bounds for the fractal dimension of the graph of solutions to the linear Schr\"odinger equation on $\mathbb{S}^d$ and $\mathbb{T}^d$. Specifically for $\mathbb S^d$, we provide dimension
Externí odkaz:
http://arxiv.org/abs/2304.12363
The branching of an RNA molecule is an important structural characteristic yet difficult to predict correctly, especially for longer sequences. Using plane trees as a combinatorial model for RNA folding, we consider the thermodynamic cost, known as t
Externí odkaz:
http://arxiv.org/abs/2303.12227
Autor:
McDanel, Bradley, Huynh, Chi Phuong
We introduce the notion of a Patch Sampling Schedule (PSS), that varies the number of Vision Transformer (ViT) patches used per batch during training. Since all patches are not equally important for most vision objectives (e.g., classification), we a
Externí odkaz:
http://arxiv.org/abs/2208.09520
Publikováno v:
J. Fractal Geom. 8 (2021), no. 4, 305-346
We study the family of vertical projections whose fibers are right cosets of horizontal planes in the Heisenberg group, $\mathbb{H}^n$. We prove lower bounds for Hausdorff dimension distortion of sets under these mappings, with respect to the Euclide
Externí odkaz:
http://arxiv.org/abs/2002.04789
We predict that conduction electrons in a semiconductor film containing a centered square array of metal nanowires normal to its plane are bound in quantum states around the central wires, if a positive bias voltage is applied between the wires at th
Externí odkaz:
http://arxiv.org/abs/1911.03720
Let $n$ points be in crescent configurations in $\mathbb{R}^d$ if they lie in general position in $\mathbb{R}^d$ and determine $n-1$ distinct distances, such that for every $1 \leq i \leq n-1$ there is a distance that occurs exactly $i$ times. Since
Externí odkaz:
http://arxiv.org/abs/1610.07836
Autor:
Durst, Rebecca F., Huynh, Chi, Lott, Adam, Miller, Steven J., Palsson, Eyvindur A., Touw, Wouter, Vriend, Gert
According to Benford's Law, many data sets have a bias towards lower leading digits (about $30\%$ are $1$'s). The applications of Benford's Law vary: from detecting tax, voter and image fraud to determining the possibility of match-fixing in competit
Externí odkaz:
http://arxiv.org/abs/1609.04106
Autor:
Cordwell, Katherine, Hlavacek, Max, Huynh, Chi, Miller, Steven J., Peterson, Carsten, Vu, Yen Nhi Truong
Publikováno v:
Res. number theory (2018) 4: 43
Given a recurrence sequence $H$, with $H_n = c_1 H_{n-1} + \dots + c_t H_{n-t}$ where $c_i \in \mathbb{N}_0$ for all $i$ and $c_1, c_t \geq 1$, the generalized Zeckendorf decomposition (gzd) of $m \in \mathbb{N}_0$ is the unique representation of $m$
Externí odkaz:
http://arxiv.org/abs/1608.08764
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.
Akademický článek
Tento výsledek nelze pro nepřihlášené uživatele zobrazit.
K zobrazení výsledku je třeba se přihlásit.
K zobrazení výsledku je třeba se přihlásit.